(47-1) 03 * << * >> * Русский * English * Содержание * Все выпуски
  
Пространственные и временные характеристики четырехволнового преобразователя излучения в параболическом волноводе с резонансной нелинейностью
 Е.В. Воробьева 1, В.В. Ивахник 1, Д.Р. Капизов 1
 1 Самарский национальный исследовательский университет имени академика С.П. Королёва,
 
     443086, Россия, г. Самара, Московское шоссе, д. 34
 
 PDF, 804 kB
  PDF, 804 kB
DOI: 10.18287/2412-6179-CO-1199
Страницы: 27-35.
Аннотация:
 
С использованием функции временного отклика, функции размытия точки проанализированы пространственные и временные характеристики вырожденного четырехволнового преобразователя в многомодовом волноводе с резонансной нелинейностью. Для четырехволнового преобразователя при условии одномодовых с равными номерами мод волнами накачки получены зависимости ширины временного отклика от номера моды объектной волны, интенсивности первой волны накачки, длины волновода. Показано, что наибольший вклад в амплитуду объектной волны обусловлен модой волновода, номер которой совпадает с номерами мод одномодовых волн накачки. Для стационарного режима учет пространственной структуры гауссовой волны накачки приводит с уменьшением ширины пучка накачки к монотонному уменьшению с последующим выходом на постоянное значение полуширины модуля функции размытия точки. При одномодовых волнах накачки с равными номерами мод с увеличением номера моды волн накачки наблюдается перераспределение энергии, сосредоточенной в побочных максимумах изображения точечного сигнала, улучшение качества обращения волнового фронта.
Ключевые слова:
четырехволновой преобразователь излучения, параболический волновод, резонансная нелинейность, функция размытия точки, временной отклик.
Благодарности
Xxxx.
Цитирование:
Воробьева, Е.В. Пространственные и временные характеристики четырехволнового преобразователя излучения в параболическом волноводе с резонансной нелинейностью / Е.В. Воробьева, В.В. Ивахник, Д.Р. Капизов // Компьютерная оптика. – 2023. – Т. 47, № 1. – С. 27-35. – DOI: 10.18287/2412-6179-CO-1199.
Citation:
Vorobeva EV, Ivakhnik VV, Kapizov DR. Spatial and time characteristics of a four-wave radiation converter in a parabolic waveguide with resonant nonlinearity. Computer Optics 2023; 47(1): 27-35. DOI: 10.18287/2412-6179-CO-1199.
References:
  - Turitsyn SK, Bednyakova  AE, Fedoruk MP, Papernyi SB, Clements WRL. Inverse four-wave mixing and  self-parametric amplification in optical fibre. Nat Photonics 2015; 9: 608-664.  DOI: 10.1038/NPHOTON.2015.150.
- Weng  Y, He X, Wang J, Pan Z. All-optical ultrafast wavelength and mode converter  based on intermodal four-wave mixing in few-mode fibers. Opt Commun 2015;  348: 7-12. DOI: 10.1016/j.optcom.2015.03.018. 
 
- Nazemosadat E, Pourbeyram H, Mafi  A. Phase matching for spontaneous frequency conversion via four-wave mixing in  graded–index multimode optical fibers. J Opt Soc Am B 2016; 33(2): 144-150.  DOI: 10.1364/JOSAB.33.000144.
 
- Anjum OF, Guasoni M, Horak P,  Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization insensitive  four wave mixing based wavelength conversion in few-mode optical fibers. J  Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
 
- Zhang H, Bigot-Astruc M, Bigot L,  Sillard P, Fatome J. Multiple modal and  wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt  Express 2019; 27(11): 15413-15425. DOI:  10.1364/OE.27.015413. 
 
- Gupta R, Kaler RS. Nonlinear Kerr  and intermodal four-wave mixing effect in mode-division multiplexed multimode  fiber link. Opt Eng 2019; 58(3): 036108. DOI:  10.1117/1.OE.58.3.036108.
 
- Zhang H, Bigot-Astruc M, Sillard P, Fatome J. Spatially multiplexed picosecond pulse-train  generation in a 6 LP mode fiber based on multiple four-wave mixings.  Appl Opt 2019; 58(31):     8570-8576. DOI:  10.1364/AO.58.008570. 
 
- Yuan J, Kang Z, Li F, Zhang X,  Sang X, Zhou G, Wu Q, Yan B, Wang K, Yu C, Tam HY, Wai PKA. LDemonstration of intermodal  four-wave mixing by femtosecond pulses centered at 1550 nm in an air-silica  photonic crystal fiber. J Lightw Technol 2017; 35(12): 2385-2390. DOI: 10.1109/JLT.2017.2681183.
 
- Yulin AV, Skryabin DV, Russell  PSJ. Four-wave mixing of linear waves and solitons in fibers with  higher-order dispersion. Opt Lett 2004;  29(20): 2411-2413. DOI:  10.1364/OL.29.002411.
 
- Esmaeelpour M, Essiambre RJ,  Fontaine NK, Ryf R, Toulouse J, Sun Y, Lingle R. Power fluctuations of intermodal  four-wave mixing in few-mode fibers. J  Lightw Technol 2017; 35(12): 2429-2435. DOI: 10.1109/JLT.2017.2660459.
 
- Mondal P, Bhatia N, Mishra V,  Haldar R, Varshney SK. Cascaded Raman and intermodal four-wave mixing in  conventional non-zero dispersion-shifted fiber for versatile ultra-broadband  continuum generation. J Lightw Technol 2018; 36(12): 2351-2357. DOI:  10.1109/JLT.2018.2809914.
 
- Guasoni M, Parmigiani F, Horak  P, Fatome J, Richardson DJ. Intermodal four-wave mixing and parametric amplification  in kilometer-long multimode fibers. J Lightw Technol 2017; 35(24): 5296-5305.  DOI: 10.1109/JLT.2017.2767103.
 
- Trägårdh J, Pikálek T, Stibůrek  M, Simpson S, Cifuentes A, Čižmár T. CARS microscopy through a multimode fiber  probe with reduced four-wave mixing background. In: Biophotonics congress:  Biomedical optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Technical  digest series (Optica Publishing Group, 2022) 2022: JM3A.43. DOI:  10.1364/TRANSLATIONAL.2022.JM3A.43.
 
- Voronin ES, Petnikova VM, Shuvalov  VV. Use of degenerate parametric processes for wave front correction (review).  Soviet Journal of Quantum Electronics 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
 
- Barashkov MS, Matveev IN, Petnikova VM, Umnov AF, Ustinov ND, Shuvalov VV. Compensation of phase distortions in a single-transit  wavefront-reversal system with a degenerate four-photon interaction. Soviet Journal of Quantum  Electronics 1982; 12(11): 1524-1525. DOI: 10.1070/2FQE1982v012n11ABEH006186.
 
- Lukin VP. Adaptive optics in the  formation of optical beams and images. Physics-Uspekhi 2014; 57(6): 556-592. DOI: 10.3367/UFNe.0184.201406b.0599. 
 
- Lukin VP, Kanev  FY, Kulagin OV. Possibilities of joint application of adaptive optics technique  and nonlinear optical phase conjugation to compensate for turbulent distortions.  Quantum Electron 2016; 46(5): 481-484. DOI: 10.1070/QEL15874. 
 
- Zhou P, Fan D. Terahertz-wave  generation by surface-emitted four-wave mixing in optical fiber. Chin Opt Lett  2011; 9(5): 051902. DOI: 10.3788/COL201109.051902.
 
- Pourbeyram H, Nazemosadat E,  Mafi A. Detailed analysis of amplified spontaneous four-wave mixing in a multimode  fiber. Frontiers in Optics 2015: FW5F.3. DOI: 10.1364/FIO.2015.FW5F.3.
 
- Chuprina IN, An PP, Zubkova EG, Kovalyuk VV, Kalachev AA, Goltsman  GN. Optimisation of spontaneous four-wave mixing in a ring microcavity. Quantum  Electron 2017; 47(10): 887-891. DOI: 10.1070/QEL16511. 
 
- Lera G, Nieto-Vesperinas M. Phase  conjugation by four-wave mixing of statistical beams. Phys Rev A 1990; 41(11):  6400-6405. DOI: 10.1103/PhysRevA.41.6400. 
 
- Erokhin AI, Kovalev  VI, Miheev PA, Faizullov FS. Quality of wavefront reversal of multifrequency  radiation by four-wave interaction. Soviet Journal of Quantum Electronics  1985; 15(1): 116-119. DOI: 10.1070/QE1985v015n01ABEH005879. 
 
- Ben' VN, Bondarenko SV, Ivakin EV, Rubanov AS.  Influence of the angular selectivity on imaging properties of a four-wave  wavefront-reversing mirror. Soviet Journal of Quantum Electronics 1987; 17(2): 239-241. DOI:  10.1070/QE1987v017n02ABEH007248.
 
- Arutunyan VM,  Agadjanyan SA, Muradyan A, Oganyan AA, Papazyan TA. Efficiency and quality  investigation of the phase conjugation of degenerate four-wave parametric mixing  of picosecond pulses in a resonance dye. Opt Commun 1984; 50(3): 123-126. DOI: 10.1016/0030-4018(84)90148-2.
 
- Il'inykh PN,  Kovalev VI, Suvorov MB. Spatial characteristics of a beam and quality of phase  conjugation of radiation from a CO2 laser with InAs in its resonator. Soviet  Journal of Quantum Electronics 1990; 20(6): 609-612. DOI:  10.1070/QE1990v020n06ABEH006623.
 
- Ivleva LI,  Korol'kov SA, Lyubomudrov OV, Mamaev AV, Polozkova NM, Shkunov VV. Efficiency  and quality of four-wave phase conjugation of a signal with a time-dependent  spatial structure. Quantum Electron 1995; 25(3), 247-251. DOI:  10.1070/QE1995v025n03ABEH000336.
 
- Ill'inskii YA,  Petnikova VM. Influence of linear filtering on wavefront reconstruction. Soviet  Journal of Quantum Electronics 1980; 10(2): 250-252. DOI:  10.1070/QE1980v010n02ABEH009960.
 
- Kirsanov AV,  Yarovoi VV. Phase conjugation of a speckle-inhomogeneous beam by an Nd glass  oscillator based on four-wave mixing with feedback. Quantum Electron 1997;  27(3): 239-244. DOI: 10.1070/QE1997v027n03ABEH000910.
 
- Betin AA,  Ergakov KV, Mitropol'skii OV. Reflection of speckle-inhomogeneous CO2 laser  radiation under four-wave interaction conditions with feedback. Quantum Electron  1994; 24(1): 59-62. DOI:  10.1070/QE1994v024n01ABEH000020.
 
- Dmitriev VG. Nonlinear  optics and wavefront reversal [In Russian]. Moscow:  "Fizmatlit" Publisher; 2003. ISBN: 5-9221-0080-7. 
 
- Ivakhnik VV. Wavefront reversal  at four-wave interactions [In Russian]. Samara: Samara State   University; 2010. ISBN:  978-5-86465-471-2.
 
- Akimov AA, Vorobeva EV, Ivakhnik VV.  The time response of a four-wave converter of radiation on thermal nonlinearity  [In Russian]. Computer Optics 2011; 35(4): 462-466. 
 
- Ivakhnik VV, Savelyev MV. Four-wave  mixing in a transparent medium based on electrostriction and Dufour effect at  large reflectance. Physics Procedia 2015; 73: 26-32. doi: 10.1016/j.phpro.2015.09.117.
 
- Akimov AA, Ivakhnik VV, Nikonov VI.  Four-wave interaction on resonance and thermal nonlinearities in a scheme with  concurrent pump wavesat high conversion coefficients. Radiophysics and Quantum  Electronics 2015; 57: 672-679. doi:  10.1007/s11141-015-9553-x. 
 
- Vorobieva EV, Ivakhnik VV, Luneva  MV. Time dependence of the point spread function of a four-wave converter in a  waveguide with thermal nonlinearity [In Russian]. Vestnik of Samara University,  Natural Science Series 2014; 10(121): 130-139. DOI:  10.18287/2541-7525-2014-20-10-130-139.
 
- Ivakhnik VV, Kapizov DR, Nikonov VI. Four-wave interaction  in a multimode waveguide with a thermal nonlinearity in a circuit with  codirectional pumping waves [In Russian]. Physics of Wave Processes and  Radio Systems 2020; 23(3): 27-33. DOI: 10.18469/1810-3189.2020.23.3.27-33.
 
- Vorobyeva EV, Ivakhnik VV, Kaurov  AV. The spatial characteristics of a four-wave converter of radiation in  multimode waveguide with resonant nonlinearity. Physics of Wave Processes and  Radio Systems 2018; 21(1): 4-11.
 
- Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront  reversal for four-wave interaction in a multimode waveguide with thermal  nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI:  10.18287/2412-6179-CO-1011.
 
- Vinogradova MB, Rudinko OV, Sukhorukov AP. Theory of waves [In  Russian]. Moscow:  URSS Publisher; 2019. ISBN: 978-5-9710-6283-7. 
 
- Tikhonov EA, Shpak MT. Nonlinear  optical phenomena in organic compounds [In Russian]. Kiev: "Naukova Dumka" Publisher;  1984.
 
- Adams  MJ. An introduction to optical waveguide. New York: John Wiley and  Sons Ltd; 1981. 
 
- Slyusareva E, Gerasimova M,  Plotnikov A, Sizykh A. Spectral study of fluorone dyes sorption on  chitosan-based polyelectrolyte complexes. J Colloid Interface Sci 2014; 417: 80-87.  DOI: 10.1016/j.jcis.2013.11.016.     
    
- Zel'dovich BY, Pilipetskii NF,  Shkunov VV. Wavefront reversal [In Russian]. Moscow: "Nauka" Publisher; 1985.
      
      
    
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20