(47-6) 10 * << * >> * Русский * English * Содержание * Все выпуски
  
Моделирование пространственного распределения рассеянного света при освещении резонансной дифракционной решётки структурированным излучением
 С.Н. Хонина 1,2, Ю.В. Капитонов 2
 1 ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
     443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
     2 Санкт-Петербургский государственный университет,
  198504, Россия, г. Санкт-Петербург, ул. Ульяновская, д. 1
 PDF, 1907 kB
DOI: 10.18287/2412-6179-CO-1404
Страницы: 927-937.
Аннотация:
В данной работе проведён сравнительный  теоретический анализ и численное моделирование действия различных типов решёток  в дальней зоне дифракции на основе преобразования Фурье. Более детально  рассмотрен пространственный спектр (картины дифракции в дальней зоне или в  фокальной плоскости) бинарных амплитудных решёток, в том числе с учётом  вариаций фил-фактора. При анализе характеристик экспериментально созданных  резонансных решёток на основе галогенидных перовскитов рассмотрено влияние типа  освещающего пучка на формирование первых трёх дифракционных порядков.
Ключевые слова:
резонансная дифракционная решётка, пространственный  спектр, структурированное излучение.
Благодарности
Работа выполнена при поддержке Министерства науки и  высшего образования РФ (Мегагрант № 075-15-2022-1112), а также в рамках  Государственного задания ФНИЦ «Кристаллография и фотоника» РАН (в части сравнительного  теоретического анализа).
Цитирование:
Хонина, С.Н. Моделирование пространственного распределения рассеянного света при освещении резонансной дифракционной решётки структурированным излучением / С.Н. Хонина, Ю.В. Капитонов // Компьютерная оптика. – 2023. – Т. 47, № 6. – С. 927-937. – DOI: 10.18287/2412-6179-CO-1404.
Citation:
Khonina SN, Kapitonov YV. Simulation of the spatial distribution of scattered light under illumination of a resonant diffraction grating with structured light. Computer Optics 2023; 47(6): 927-937. DOI: 10.18287/2412-6179-CO-1404.
References:
  - Hutley MC. Diffraction  gratings. New York:  Academic Press; 1982. ISBN: 978-0-12-362980-7.
 
  - Born M, Wolf E.  Principles of optics: Electromagnetic theory of propagation, interference and  diffraction of light. Cambridge: Cambridge University Press; 1999.
 
  - Palmer C, Loewen E. Diffraction  grating handbook. Rochester, NY: Newport Corp; 2002.
     
  - Dammann GH, Görtler K. High  efficiency in-line multiple imaging by means of multiple phase holograms. Opt  Commun 1971; 3(5): 312-315. DOI: 10.1016/0030-4018(71)90095-2.
     
  - Lee WH. High efficiency multiple  beam gratings. Appl Opt 1979; 18(13): 2152-2158. DOI:  10.1364/AO.18.002152.
     
  - Mait JN. Design of binary-phase and  multiphase Fourier gratings for array generation. J Opt Soc Am A 1990;  7(8): 1514-1528. DOI: 10.1364/JOSAA.7.001514.
     
  - O’Shea DC. Reduction of the  zero-order intensity in binary Dammann gratings. Appl Opt 1995; 34(28):  6533-6537. DOI: 10.1364/AO.34.006533.
     
  - Miller JM, Taghizadeh MR, Turunen J,  Ross N. Multilevel-grating array generators: Fabrication error analysis and  experiments. Appl Opt 1993; 32(14): 2519-2525. DOI:  10.1364/AO.32.002519.
     
  - Lizotte T, Rosenberg R, Obar O.  Actual performance vs. modeled performance of diffractive beam splitters. Proc  SPIE 2005; 5876: 505-515. DOI: 10.1117/12.618549.
     
  - Wolfe WL. Introduction to grating  spectrometers. Bellingham, Washington: SPIE Press; 1997.
     
  - Karpeev SV, Khonina SN, Kharitonov  SI. Study of the diffraction grating on a convex surface as a dispersive element.  Computer Optics 2015; 39(2): 211-217. DOI:  10.18287/0134-2452-2015-39-2-211-217.
     
  - Pavlycheva NK. Diffraction gratings  for spectral devices [Review]. J Opt Technol 2022; 89(3): 142-150. DOI:  10.1364/JOT.89.000142.
     
  - Berezny  AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements  produced by photolithography. Opt Lasers Eng 1991; 15(5): 331-340. DOI:  10.1016/0143-8166(91)90020-T.
     
  - Levy U, Desiatov B, Goykhman I,  Nachmias T, Ohayon A, Meltzer SE. Design, fabrication, and characterization of  circular Dammann gratings based on grayscale lithography. Opt Lett 2010;  35(6): 880-882. DOI: 10.1364/OL.35.000880.
     
  - Bhardwaj P, Erdmann A, Leitel R.  Modeling of grayscale lithography and calibration with experimental data for  blazed gratings. Proc SPIE 2021; 11875: 118750K. DOI:  10.1117/12.2597203.
     
  - Rebollar E, Castillejo M, Ezquerra  TA. Laser induced periodic surface structures on polymer films: From fundamentals  to applications. Eur Polym J 2015; 73: 162-174. DOI:  10.1016/j.eurpolymj.2015.10.012.
     
  - Pawlik G, Wysoczanski T, Mitus AC.  Complex dynamics of photoinduced mass transport and surface relief gratings  formation. Nanomaterials 2019; 9(3): 352. DOI: 10.3390/nano9030352.
     
  - Jelken J, Henkel C, Santer S.  Formation of half-period surface relief gratings in azobenzene containing  polymer films. Appl Phys B 2020; 126: 149. DOI:  10.1007/s00340-020-07500-w.
     
  - Porfirev A, Khonina S, Meshalkin A,  Ivliev N, Achimova E, Abashkin V, Prisacar A, Podlipnov V. Two-step maskless  fabrication of compound fork-shaped gratings in nanomultilayer structures based  on chalcogenide glasses. Opt Lett 2021; 46(13): 3037-3040. DOI:  10.1364/OL.427335.
     
  - Reda F, Salvatore M, Borbone F,  Maddalena P, Oscurato SL. Accurate morphology-related diffraction behavior of  light-induced surface relief gratings on azopolymers. ACS Materials Lett  2022; 4(5): 953-959. DOI: 10.1021/acsmaterialslett.2c00171.
     
  - Kapitonov  YuV, Kozhaev MA, Dolgikh YuK, Eliseev SA, Efimov YuP, Ulyanov PG, Petrov VV,  Ovsyankin VV. Spectrally  selective diffractive optical elements based on 2D-exciton resonance in  InGaAs/GaAs single quantum wells. Phys Status Solidi B 2013; 250(10):  2180-2184. DOI: 10.1002/pssb.201349112.
     
  - Kapitonov  YuV, Shapochkin PYu, Beliaev LYu, Petrov YuV, Efimov YuP, Eliseev SA, Lovtcius  VA, Petrov VV, Ovsyankin VV. Ion-beam-assisted  spatial modulation of inhomogeneous broadening of a quantum well resonance:  excitonic diffraction grating. Opt Lett 2016; 41(1): 104-106. DOI:  10.1364/OL.41.000104.
     
  - Shapochkin  PYu, Petrov YuV, Eliseev SA, Lovcjus VA, Efimov YuP, Kapitonov YuV. Modelling and optimization of the  excitonic diffraction grating. J Opt Soc Am A 2019; 36(9): 1505-1511. DOI:  10.1364/JOSAA.36.001505.
     
  - Kapitonov YuV, Shapochkin PYu, Petrov YuV,  Lovtcius VA, Eliseev SA, Efimov YuP. Diffraction from excitonic diffraction grating. J Phys Conf Ser 2019;  1368: 022013. DOI: 10.1088/1742-6596/1368/2/022013.
     
  - Mamaeva  MP, Lozhkin MS, Shurukhina AV, Stroganov BV, Emeline AV, Kapitonov YuV. Halide  perovskite excitonic diffraction grating. Adv Opt Mater 2023; 11(5): 2202152.  DOI: 10.1002/adom.202202152.
     
  - Kapitonov YuV, Shapochkin PYu,  Petrov YuV, Efimov YuP, Eliseev SA, Dolgikh YuK, Petrov VV, Ovsyankin VV.  Effect of irradiation by He+ and Ga+ ions on the 2D-exciton susceptibility of  InGaAs/GaAs quantum-well structures. Phys Status Solidi B 2015; 252(9):  1950-1954. DOI: 10.1002/pssb.201451611.
     
  - Yudin VI, Lozhkin M, Shurukhina AV,  Emeline AV, Kapitonov YuV. Photoluminescence manipulation by the ion beam  irradiation in CsPbBr3 halide perovskite single crystals. J Phys  Chem C 2019; 123: 21130-21134. DOI: 10.1021/acs.jpcc.9b04267.
     
  - Selivanov NI, Murzin AO, Yudin VI,  Kapitonov YuV, Emeline AV. Counterdiffusion-in-gel growth of high optical and  crystal quality MAPbX3 (MA = CH3NH3+,  X = I−, Br−) lead-halide perovskite single crystals. CrystEngComm  2022; 24: 2976-2981. DOI: 10.1039/d2ce00096b.
     
  - Samsonova AYu, Yudin VI, Shurukhina  AV, Kapitonov YuV. Excitonic enhancement and excited excitonic states in CsPbBr3  halide perovskite single crystals. Materials 2023; 16(1): 185. DOI:  10.3390/ma16010185.
     
  - Lozhkina  OA, Yudin VI, Murashkina AA, Shilovskikh VV, Davydov VG, Kevorkyants R, Emeline  AV, Kapitonov YuV, Bahnemann DW. Low inhomogeneous broadening of excitonic resonance in MAPbBr3  single crystals. J Phys Chem Lett 2018; 9(2): 302-305. DOI:  10.1021/acs.jpclett.7b02979.
     
  - Nazarov RS, Solovev IA, Murzin AO,  Selivanov NI, Even J, Emeline AV, Kapitonov YuV. Photon echo from free excitons  in a CH3NH3PbI3 halide perovskite single  crystal. Phys Rev B 2022; 105(24): 245202. DOI: 10.1103/PhysRevB.105.245202.
     
  - Goodman  JW. Introduction to Fourier optics. 2nd ed. New York: McGraw–Hill; 1996.
     
  - Trichili A, Park K-H, Zghal M, Ooi  BS, Alouini M-S. Communicating using spatial mode multiplexing: potentials,  challenges, and perspectives. IEEE Commun Surv Tutor 2019; 21(4):  3175-3203. DOI: 10.1109/COMST.2019.2915981.
     
  - Kazanskiy  NL, Khonina SN, Karpeev SV, Porfirev AP. Diffractive optical elements for multiplexing structured laser beams. Quantum  Electron 2020; 50(7): 629-635. DOI: 10.1070/QEL17276.
     
  - Porfirev AP, Khonina SN.  Experimental investigation of multi-order diffractive optical elements matched  with two types of Zernike functions. Proc SPIE 2016; 9807: 98070E. DOI:  10.1117/12.2231378.
     
  - Fu S, Zhang S, Wang T, Gao C.  Measurement of orbital angular momentum spectra of multiplexing optical vortices.  Opt Express 2016; 24(6): 6240-6248. DOI: 10.1364/OE.24.006240.
     
  - Harrison C, Stafford CM, Zhang W,  Karim A. Sinusoidal phase grating created by a tunably buckled surface. Appl  Phys Lett 2004; 85(18): 4016-4018. DOI: 10.1063/1.1809281.
     
  - Harvey JE, Pfisterer RN.  Understanding diffraction grating behavior: including conical diffraction and  Rayleigh anomalies from transmission gratings. Opt Eng 2019; 58(8):  087105. DOI: 10.1117/1.OE.58.8.087105.
     
  - Ustinov AV, Porfir’ev AP, Khonina SN.  Effect of the fill factor of an annular diffraction grating on the energy distribution  in the focal plane. J Opt Technol 2017; 84(9): 580-587. DOI:  10.1364/JOT.84.000580.
     
  - Torcal-Milla FJ, Sanchez-Brea LM.  Diffraction by gratings with random fill factor. Appl Opt 2017; 56(18):  5253-5257. DOI: 10.1364/AO.56.005253.
     
  - Khonina SN, Ustinov AV. Binary multi-order diffraction  optical elements with variable fill factor for the formation and detection of  optical vortices of arbitrary order. Appl  Opt 2019; 58(30): 8227-8236. DOI: 10.1364/AO.58.008227.
     
  - Meshalkin AYu, Podlipnov VV, Ustinov  AV, Achimova EA. Analysis of diffraction efficiency of phase gratings in  dependence of duty cycle and depth. J Phys Conf Ser 2019; 1368: 022047.  DOI: 10.1088/1742-6596/1368/2/022047.
     
  - Litchinitser NM. Structured light meets structured  matter. Science 2012; 337(6098): 1054-1055. DOI:  10.1126/science.1226204.
     
  - Rosales-Guzmán C, Ndagano B, Forbes  A. A review of complex vector light fields and their applications. J Opt  2018; 20(12): 123001. DOI: 10.1088/2040-8986/aaeb7d.
     
  - Angelsky OV, Bekshaev AY, Hanson SG,  Zenkova CY, Mokhun II, Jun Z. Structured light: Ideas and concepts. Front  Phys 2020; 8: 114. DOI: 10.3389/fphy.2020.00114.
     
  - Forbes  A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262.  DOI: 10.1038/s41566-021-00780-4.
     
  - Andrews DL. Structured light and its  applications: An introduction to phase structured beams and nanoscale optical  forces. Academic Press; 2011.
     
  - Kogelnik H, Li T. Laser beams and  resonators. Appl Opt 1966; 5(10): 1550-1567. DOI: 10.1364/AO.5.001550.
     
  - Siegman AE. Laser beams and  resonators: Beyond the 1960s. IEEE J Sel Top Quantum Electron 2000; 6(6):  1389-1399. DOI: 10.1109/2944.902193.
     
  - Chen YF, Lee CC, Wang CH, Hsieh MX.  Laser transverse modes of spherical resonators: a review [Invited]. Chinese  Opt Lett 2020; 18(9): 091404.
     
  - Khonina  SN, Kazanskiy NL, Karpeev SV, Butt MA. Bessel beam: Significance and  applications–A progressive review. Micromachines 2020; 11(11): 997. DOI:  10.3390/mi11110997.
     
  - Padgett  MJ. Orbital angular momentum 25 years on [Invited]. Opt Express 2017;  25(10): 11265-11274. DOI: 10.1364/OE.25.011265. 
     
  - Wang XW, Nie ZQ, Liang Y, Wang J, Li  T, Jia BH. Recent advances on optical vortex generation. Nanophotonics  2018; 7(9): 1533-1556. DOI: 10.1515/nanoph-2018-0072.
     
  - Shen  Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years  on: OAM manipulation from topological charge to multiple singularities. Light  Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
     
  - Chen  J, Wan C, Zhan Q. Engineering photonic angular momentum with structured light:  a review. Adv Photon 2021; 3(6): 064001. DOI: 10.1117/1.AP.3.6.064001. 
     
  - Porfirev  AP, Kuchmizhak AA, Gurbatov SO, Juodkazis S, Khonina SN, Kul’chin YuN. Phase  singularities and optical vortices in photonics. Physics–Uspekhi 2022; 65(8):  789-811. DOI: 10.3367/UFNe.2021.07.039028.
     
  - Porfirev  A, Khonina S, Kuchmizhak A. Light–matter interaction empowered by orbital  angular momentum: Control of matter at the micro- and nanoscale. Prog Quantum  Electron 2023; 88: 100459. DOI: 10.1016/j.pquantelec.2023.100459.
     
  - Bandres  MA, Gutierrez-Vega JC, Chavez-Cerda S. Parabolic nondiffracting optical wave  fields. Opt Lett 2004; 29(1): 44-46. DOI: 10.1364/OL.29.000044.
     
  - Belafhal  A, Ez-Zariy L, Hennani S, Nebdi H. Theoretical introduction and generation  method of a novel nondiffracting waves: Olver beams. Opt Photon J 2015; 5(7):  234-246. DOI: 10.4236/opj.2015.57023.
     
  - Siviloglou GA, Christodoulides DN. Accelerating  finite energy Airy beams. Opt Lett 2007; 32(8): 979-981. DOI:  10.1364/OL.32.000979.
     
  - Khonina  SN. Specular and vortical Airy beams. Opt Commun 2011; 284(19): 4263-4271. DOI:  10.1016/j.optcom.2011.05.068.
     
  - Zang  F, Wang Y, Li L. Dual self-accelerating properties of one-dimensional finite  energy Pearcey beam. Results Phys 2019; 15: 102656. DOI:  10.1016/j.rinp.2019.102656.
     
  - Efremidis  NK, Christodoulides DN. Abruptly autofocusing waves. Opt Lett 2010;  35(23): 4045-4047. DOI: 10.1364/OL.35.004045. 
     
  - Davis JA, Cottrell DM, Sand D.  Abruptly autofocusing vortex beams. Opt Express 2012; 20(12):  13302-13310. DOI: 10.1364/OE.20.013302.
     
  - Chen B, Chen C, Peng X, Peng Y, Zhou  M, Deng D. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Opt  Express 2015; 23(12): 19288-19298. DOI: 10.1364/OE.23.019288.
     
  - Khonina SN, Porfirev AP, Ustinov AV.  Sudden autofocusing of superlinear chirp beams. J Opt 2018; 20(2):  025605. DOI: 10.1088/2040-8986/aaa075.
     
  - Chen X, Deng D, Zhuang J, Yang X,  Liu H, Wang G. Nonparaxial propagation of abruptly autofocusing circular  Pearcey Gaussian beams. Appl Opt 2018; 57(28): 8418-8423. DOI:  10.1364/AO.57.008418.
     
  - Khonina SN. Mirror and circular  symmetry of autofocusing beams. Symmetry 2021; 13(10): 1794. DOI:  10.3390/sym13101794.
     
  - Allen L, Beijersbergen MW, Spreeuw  RJC, Woerdman JP. Orbital angular momentum of light and the transformation of  Laguerre–Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI:  10.1103/PhysRevA.45.8185.
     
  - Khonina SN, Kotlyar VV, Soifer VA,  Honkanen M, Lautanen J, Turunen J. Generation of rotating Gauss–Laguerre modes  with binary-phase diffractive optics. J Mod Opt 1999; 46(2): 227-238.  DOI: 10.1080/09500349908231267.
     
  - Khonina SN, Kotlyar VV, Soifer VA.  Self-reproduction of multimode Hermite–Gaussian beams. Tech Phys Lett  1999; 25(6): 489-491. DOI: 10.1134/1.1262525.
     
  - Enderlein J, Pampaloni F. Unified  operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser  modes. J Opt Soc Am A 2004; 21(8): 1553-1558. DOI:  10.1364/JOSAA.21.001553.
     
  - Barwick S. Accelerating regular  polygon beams. Opt Lett 2010; 35(24): 4118-4120. DOI:  10.1364/OL.35.004118.
     
  - Khonina SN, Ustinov AV, Porfirev AP.  Aberration laser beams with autofocusing properties. Appl Opt 2018;  57(6): 1410-1416. DOI: 10.1364/AO.57.001410. 
 
  - Fang Z-X, Zhao H-Z, Chen Y, Lu R-D, He L-Q, Wang P.  Accelerating polygon beam with peculiar features. Sci Rep 2019; 9: 17817. DOI: 10.1038/s41598-019-54457-8.
 
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20