(47-6) 11 * << * >> * Русский * English * Содержание * Все выпуски
  
Особенности дифракции Гауссовых пучков в ближней зоне при изменении высоты кремниевых субволновых оптических элементов
 Д.А. Савельев 1,2
 1 Самарский национальный исследовательский университет имени академика С.П. Королёва,
     443086, Россия, г. Самара, Московское шоссе, д. 34;
     2 ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
  443001, Россия, г. Самара, ул. Молодогвардейская, д. 151
 PDF, 3106 kB
DOI: 10.18287/2412-6179-CO-1402
Страницы: 938-947.
Аннотация:
В данной работе методом конечных разностей во  временной области исследованы особенности дифракции Гауссовых пучков и мод  Лагерра–Гаусса на кремниевых субволновых оптических элементах с переменной  высотой рельефа в ближней зоне. В качестве оптических элементов рассматривались  дифракционные аксиконы и субволновые кольцевые решетки при изменении высоты  рельефа. Было показано, что возможен такой подбор высоты отдельных колец  рельефа кольцевых решеток, при котором достижимо уменьшение размеров фокального  пятна вплоть до 0,26λ,  формирование протяженного светового отрезка (до 4,88λ), формирование оптических  ловушек.
Ключевые слова:
Гауссовы пучки, оптические вихри, кремниевые  кольцевые решетки, дифракционный аксикон, острая фокусировка, оптическая  ловушка, FDTD.
Благодарности
Работа выполнена при  поддержке Министерства науки и высшего образования в рамках выполнения  Государственного задания (проект № FSSS-2023-0006) в частях «Введение», «Входные  пучки и рассматриваемые 3D-элементы», «Исследование дифракции  лазерного излучения на дифракционных аксиконах», а также за счет средств  программы стратегического академического лидерства «Приоритет 2030» в остальных  частях.
Цитирование:
Савельев, Д.А. Особенности дифракции Гауссовых пучков в ближней зоне при изменении высоты кремниевых субволновых оптических элементов / Д.А. Савельев // Компьютерная оптика. – 2023. – Т. 47, № 6. – С. 938-947. – DOI: 10.18287/2412-6179-CO-1402.
Citation:
Savelyev DA. Features of a Gaussian beam near-field diffraction upon variations in the relief height of subwavelength silicon optical elements. Computer Optics 2023; 47(6): 938-947. DOI: 10.18287/2412-6179-CO-1402.
References:
  - Siew SY, Li B, Gao F, Zheng HY, Zhang W, Guo P, Xie  SW, Song A, Dong B, Luo LW, Li C, Lo GQ. Review of silicon photonics technology  and platform development. J Lightw Technol 2021; 39(13): 4374-4389. DOI:  10.1109/JLT.2021.3066203.
 
  - Shastri BJ, Tait AN, de Lima TF, Pernice WH,  Bhaskaran H, Wright CD, Prucnal PR. Photonics for artificial intelligence and  neuromorphic computing. Nat Photon 2021; 15(2): 102-114. DOI:  10.1038/s41566-020-00754-y.
 
  - Liu  S, Feng J, Tian Y, Zhao H, Jin L, Ouyang B, Zhu J, Guo J. Thermo-optic phase  shifters based on silicon-on-insulator platform: State-of-the-art and a review.  Front Optoelectron 2022; 15(1): 9. DOI: 10.1007/s12200-022-00012-9.
     
  - Genty  G, Salmela L, Dudley JM, Brunner D, Kokhanovskiy A, Kobtsev S, Turitsyn SK.  Machine learning and applications in ultrafast photonics. Nat Photon 2021;  15(2): 91-101. DOI: 10.1038/s41566-020-00716-4.
     
  - Khonina  SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and  their marriage for on-chip and optical fiber communication: a review.  Opto-Electron Adv 2022; 5(8): 210127. DOI: 10.29026/oea.2022.210127.
     
  - Guilhot  D, Ribes-Pleguezuelo P. Laser technology in photonic applications for space.  Instruments 2019; 3(3): 50. DOI: 10.3390/instruments3030050.
     
  - Barmpoutis  P, Papaioannou P, Dimitropoulos K, Grammalidis N. A review on early forest fire  detection systems using optical remote sensing. Sensors 2020; 20(22): 6442.  DOI: 10.3390/s20226442.
     
  - Butt  M, Khonina SN, Kazanskiy NL. Optical elements based on silicon photonics.  Computer Optics 2019; 43(6): 1079-1083. DOI:  10.18287/2412-6179-2019-43-6-1079-1083.
     
  - Wendisch  FJ, Rey M, Vogel N, Bourret GR. Large-scale synthesis of highly uniform silicon  nanowire arrays using metal-assisted chemical etching. Chem Mater 2020; 32(21):  9425-9434. DOI: 10.1021/acs.chemmater.0c03593.
     
  - Savelyev  D, Kazanskiy N. Near-field vortex beams diffraction on surface micro-defects  and diffractive axicons for polarization state recognition. Sensors 2021;  21(6): 1973. DOI: 10.3390/s21061973.
     
  - Shi  Y, Zhang Y, Wan Y, Yu Y, Zhang Y, Hu X, Xiao X, Xu H, Zhang L, Pan B. Silicon  photonics for high-capacity data communications. Photonics Res 2022; 10(9):  A106-A134. DOI: 10.1364/PRJ.456772.
     
  - Cheng  L, Mao S, Li Z, Han Y, Fu HY. Grating couplers on silicon photonics: Design  principles, emerging trends and practical issues. Micromachines 2020; 11(7):  666. DOI: 10.3390/mi11070666.
     
  - Wu S,  Mu X, Cheng L, Mao S, Fu HY. State-of-the-art and perspectives on silicon  waveguide crossings: A review. Micromachines 2020; 11(3): 326. DOI:  10.3390/mi11030326.
     
  - Fatkhiev  DM, Butt MA, Grakhova EP, Kutluyarov RV, Stepanov IV, Kazanskiy NL, Khonina SN,  Lyubopytov VS, Sultanov AK. Recent advances in generation and detection of  orbital angular momentum optical beams – A review. Sensors 2021; 21(15): 4988.  DOI: 10.3390/s21154988.
     
  - Shen  Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years  on: OAM manipulation from topological charge to multiple singularities. Light  Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
     
  - Savelyev  DA. The investigation of the features of focusing vortex super-Gaussian beams  with a variable-height diffractive axicon. Computer Optics 2021; 45(2):  214-221. DOI: 10.18287/2412-6179-CO-862.
     
  - Savelyev  DA. Peculiarities of focusing circularly and radially polarized super-Gaussian  beams using ring gratings with varying relief height. Computer Optics 2022;  46(4): 537-546. DOI: 10.18287/2412-6179-CO-1131.
     
  - Zhu  F, Huang S, Shao W, Zhang J, Chen M, Zhang W, Zeng J. Free-space optical  communication link using perfect vortex beams carrying orbital angular momentum  (OAM). Opt Commun 2017; 396: 50-57. DOI: 10.1016/j.optcom.2017.03.023.
     
  - Khonina  SN, Karpeev SV, Butt MA. Spatial-light-modulator-based multichannel data  transmission by vortex beams of various orders. Sensors 2021; 21(9): 2988. DOI:  10.3390/s21092988.
     
  - Savelyev  D, Degtyarev S. Features of the optical vortices diffraction on silicon ring  gratings. Optical Memory and Neural Networks 2022; 31(1): 55-66. DOI:  10.3103/S1060992X22050095.
     
  - Savelyev  DA. The comparison of laser radiation focusing by diffractive axicons and  annular gratings with variable height using high-performance computer systems.  2021 Photonics & Electromagnetics Research Symposium (PIERS) 2021:  2709-2716. DOI: 10.1109/PIERS53385.2021.9694860.
     
  - Bozinovic  N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S.  Terabit-scale orbital angular momentum mode division multiplexing in fibers.  Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
     
  - Sirenko  AA, Marsik P, Bernhard C, Stanislavchuk TN, Kiryukhin V, Cheong SW. Terahertz  vortex beam as a spectroscopic probe of magnetic excitations. Phys Rev Lett  2019; 122(23): 237401. DOI: 10.1103/PhysRevLett.122.237401.
     
  - Khonina  SN, Ustinov AV, Volotovskiy SG, Ivliev NA, Podlipnov VV. Influence of optical  forces induced by paraxial vortex Gaussian beams on the formation of a  microrelief on carbazole-containing azopolymer films. Appl Opt 2020; 59(29):  9185-9194. DOI: 10.1364/AO.398620.
     
  - Paez-Lopez  R, Ruiz U, Arrizon V, Ramos-Garcia R. Optical manipulation using optimal  annular vortices. Opt Lett 2016; 41(17): 4138-4141. DOI: 10.1364/OL.41.004138.
     
  - Lamperska  W, Masajada J, Drobczyński S, Wasylczyk P. Optical vortex torque measured with  optically trapped microbarbells. Appl Opt 2020; 59(15): 4703-4707. DOI: 10.1364/AO.385167.
     
  - Savelyev  DA, Karpeev SV. Development of 3D microstructures for the formation of a set of  optical traps on the optical axis. Photonics 2023; 10(2): 117. DOI:  10.3390/photonics10020117.
     
  - Yang  Z, Lin X, Zhang H, Ma X, Zou Y, Xu L, Xu Y, Jin L. Design of bottle beam based  on dual-beam for trapping particles in air. Appl Opt 2019; 58(10): 2471-2480.  DOI: 10.1364/AO.58.002471.
     
  - Savelyev  DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian  beams. Computer Optics 2015; 39(5): 654-662. DOI:  10.18287/0134-2452-2015-39-5-654-662.
     
  - Khonina  SN, Kazanskiy NL, Khorin PA, Butt MA. Modern types of axicons: New functions  and applications. Sensors 2021; 21(19): 6690. DOI: 10.3390/s21196690.
     
  - Supp  S, Jahns J. Coaxial superposition of Bessel beams by discretized spiral  axicons. J Eur Opt Soc Rapid Publ 2018; 14: 18. DOI: 10.1186/s41476-018-0086-8.
     
  - Balčytis  A, Hakobyan D, Gabalis M, Žukauskas A, Urbonas D, Malinauskas M, Petruškevičius  R, Brasselet E, Juodkazis S. Hybrid curved nano-structured micro-optical  elements. Opt Express 2016; 24(15): 16988. DOI: 10.1364/OE.24.016988.
     
  - Khonina  SN, Ustinov AV. Binary multi-order diffraction optical elements with variable  fill factor for the formation and detection of optical vortices of arbitrary  order. Appl Opt 2019; 58(30): 8227-8236. DOI: 10.1364/AO.58.008227.
     
  - Yu S.  Potentials and challenges of using orbital angular momentum communications in  optical interconnects. Opt Express 2015; 23(3): 3075. DOI:  10.1364/OE.23.003075.
     
  - Prather  DW, Shi S. Formulation and application of the finite-difference time-domain  method for the analysis of axially symmetric diffractive optical elements. J  Opt Soc Am A 1999; 16(5): 1131-1142. DOI: 10.1364/JOSAA.16.001131.
     
  - Hanson  JC. Broadband RF phased array design with MEEP: Comparisons to array theory in  two and three dimensions. Electronics 2021; 10(4): 415. DOI:  10.3390/electronics10040415
     
  - Savelyev  DA. The investigation of focusing of cylindrically polarized beams with the  variable height of optical elements using high-performance computer systems.  Proc SPIE 2021; 11793: 117930X. DOI: 10.1117/12.2591993.
     
  - Zhuang  J, Zhang L, Deng D. Tight-focusing properties of linearly polarized circular  Airy Gaussian vortex beam. Opt Lett 2020; 45(2): 296-299. DOI:  10.1364/OL.45.000296.
     
  - Khonina  SN, Kazanskiy NL, Ustinov AV, Volotovskiy SG. The lensacon: nonparaxial  effects. J Opt Technol 2011; 78(11): 724-729. DOI: 10.1364/JOT.78.000724.
     
  - Ding  X, Ren Y, Lu R. Shaping super-Gaussian beam through digital micro-mirror  device. Sci China Phys Mech 2015; 58(3): 1-6. DOI: 10.1007/s11433-014-5499-9.
     
  - Darafsheh  A, Bollinger D. Systematic study of the characteristics of the photonic  nanojets formed by dielectric microcylinders. Opt Commun 2017; 402: 270-275.  DOI: 10.1016/j.optcom.2017.06.004.
     
  - Xing  H, Zhou W, Wu Y. Side-lobes-controlled photonic nanojet with a horizontal  graded-index microcylinder. Opt Lett 2018, 43(17): 4292-4295. DOI:  10.1364/OL.43.004292
     
  - Wei  P-K, Chang W-L, Lee K-L, Lin E-H. Focusing subwavelength light by using  nanoholes in a transparent thin film. Opt Lett 2009; 34(12): 1867-1869. DOI:  10.1364/OL.34.001867.
     
  - Savelyev  DA, Khonina SN. Numerical analysis of subwavelength focusing using a silicon  cylinder. Computer Optics 2014; 38(4): 638-642. DOI:  10.18287/0134-2452-2014-38-4-638-642.
     
  - Ashkin  A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient  force optical trap for dielectric particles. Opt Lett 1986; 11(5): 288-290.  DOI: 10.1364/OL.11.000288.
     
  - Dai  X, Fu W, Chi H, Mesias VSD, Zhu H, Leung CW, Liu W, Huang J. Optical tweezers-controlled  hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy  characterization of native protein structures. Nat Commun 2021; 12: 1292. DOI:  10.1038/s41467-021-21543-3. 
 
  - Gong Z, Pan YL, Videen G, Wang C. Optical trapping and manipulation of  single particles in air: Principles, technical details, and applications. J  Quant Spectrosc Radiat Transf 2018; 214: 94-119. DOI: 10.1016/j.jqsrt.2018.04.027.
 
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20