(27) * << * >> * Russian * English * Content * All Issues

Calculation and measurement of the diffraction field of a plane electromagnetic wave inside and outside a microsphere

A.V. Smirnitsky 1, R.V. Skidanov 1, 2, V.V.Kotlyar 1, 2
1Samara State Aerospace University (SSAU)
2Image Processing Systems Institute of RAS

 PDF, 22 kB

Pages: 94-105 .

Full text of article: Russian language.

Based on the Mie theory, the electric-field vector, the vector of intensity, and the Umov-Poynting vector were calculated for the electromagnetic field formed as a result of diffraction of a plane linearly polarized monochromatic wave on a dielectric microsphere with the radius of several wavelengths. Using a microscope and a television camera, light intensity distribution was also measured on different planes near a polystyrene ball with a diameter of 5 microns when a light beam of a helium-neon laser was diffracted on it. The calculated and the experimental diffraction patterns fundamentally comply with each other.

electromagnetic wave, microsphere, Mie theory, Umov-Poynting vector, plane linearly polarized monochromatic wave, helium-neon laser.

Smirnitsky AV, Skidanov RV, Kotlyar VV. Calculation and measurement of the diffraction field of a plane electromagnetic wave inside and outside a microsphere. Computer Optics 2005; 27: 95-104

This work was supported by the Russian-American Basic Research and Higher Education Program (BRHE) and a grant from the President of the Russian Federation (NSh-1007.2003.1).


  1. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 4th ed. Pergamon Press; 1970. ISBN: 978-0-08-013987-6. 
  2. van de Hulst HC. Light scattering by small particles. Mineola, NY: Dover Publications; 1981. ISBN: 978-0-486-64228-4. 
  3. Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: John Wiley and Sons; 1983. ISBN: 978-0-471-29340-8. 
  4. Nieminen TA, Rubinsztein-Dunlop H, Heckenberg HR. Calculation and optical measurement of laser trapping forces on non-spherical particles. J Quant Spectrosc Radiat Transf 2001; 70(4-6): 627-637. DOI: 10.1016/S0022-4073(01)00034-6. 
  5. Malagnini N, Pesce G, Sasso A, Arimondo E. Measurements of trapping efficiency and stiffness in optical tweezers. Opt Commun 2002; 214(1-6): 15-24. DOI: 10.1016/S0030-4018(02)02119-3. 
  6. Lock JA, Gouesbet G. Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams. J Opt Soc Am A 1994; 11(9): 2503-2515. DOI: 10.1364/JOSAA.11.002503. 
  7. Gouesbet G, Lock JA. Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams. J Opt Soc Am A 1994; 11(9): 2516-2525. DOI: 10.1364/JOSAA.11.002516. 
  8. Andreasen M. Scattering from bodies of revolution. IEEE Trans Antennas Propag 1965; 13(2): 303-310. DOI: 10.1109/TAP.1965.1138406. 
  9. Mantz J, Harrington R. Radiation and scattering from bodies of revolution. Appl Sci Res 1969; 20: 405-435. DOI: 10.1007/BF00382412. 
  10. Wu T, Tsai L. Scattering from arbitrarily-shaped lossy dielectric bodies of revolution. Radio Sci 1977; 12(5): 709-718. DOI: 10.1029/RS012i005p00709. 
  11. Medgyesi-Mitschang L, Putman J. Electromagnetic scattering from axially inhomogeneous bodies of revolution. IEEE Trans Antennas Propag 1964; 32(8): 797-806. DOI: 10.1109/TAP.1984.1143430. 
  12. Gedney S, Mittra R. The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution. IEEE Trans Antennas Propag 1990; 38(3): 313-322. DOI: 10.1109/8.52253. 
  13. Prather DW, Shi S. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements. J Opt Soc Am A 1999; 16(5): 1131-1142. DOI: 10.1364/JOSAA.16.001131. 
  14. Farafonov VS, Ilin UB, Henning T. A new solution of the light scattering problem for axisymmetric particles. J Quant Spectrosc Radiat Transf 1999; 63(2-6): 205-215. DOI: 10.1016/S0022-4073(99)00016-3. 
  15. Zhang D, Yang X-C, Tjin S, Krishnan S. Rigorous fine domain simulation of momentum transfer between light and microscopic particles in optical trapping. Opt Express 2004; 12(10): 2220-2230. DOI: 10.1364/OPEX.12.002220. 
  16. Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR, Bishop AI. Numerical modeling of optical trapping. Comput Phys Commun 2001; 142(1-3): 468-471. DOI: 10.1016/S0010-4655(01)00391-5. 
  17. Yao X, Li Z, Gou H, Cheng B, Zhang D. Effect of spherical aberration on optical trapping forces for Rayleigh particles. Chinese Phys Lett 2001; 18(3): 432-434. DOI: 10.1088/0256-307X/18/3/341. 
  18. Ganic D, Gan X, Gu M. Exact radiation trapping force calculation based on vectorial diffraction theory. Opt. Express 2004; 12(12): 2670-2675. DOI: 10.1364/OPEX.12.002670. 
  19. Im K-B, Kim H-I, Joo I-J, Oh C-H, Song S-H, Kim P-S, Park B-C. Optical trapping forces by a focused beam through two media with different refractive indices. Opt Commun 2003; 226(1-6): 25-31. DOI: 10.1016/j.optcom.2003.07.040. 
  20. Chen CG, Konkola PT, Ferrera J, Heilmann RK, Schattenburg ML. Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations. J Opt Soc Am A 2002; 19(2): 404-412. DOI: 10.1364/JOSAA.19.000404. 
  21. Wu Z, Guo L. Electromagnetic scattering from a multilayered cylinder arbitrary located in a gaussian beam, a new recursiver algorithms. Prog Electromagn Res 1998; 18: 317-333. DOI: 10.2528/PIER97071100. 
  22. Marston PL, Chrichton JH. Radiation torque on a sphere caused by circulalarly-polarized electromagnetic wave. Phys Rev A 1984; 30(5): 2508-2516. DOI: 10.1103/PhysRevA.30.2508. 
  23. Du H, Zhang H. Ultra high precision Mie scattering calculations. 2002. Source: http://optics.physics.miami.edu/exp/Mie/UltraHighMie.pdf 
  24. Du H. Mie scattering calculations. Appl Opt 2004; 43(9): 1951-1956. DOI: 10.1364/AO.43.001951. 
  25. Wiscombe WJ. Improved Mie scattering algorithms. Appl Opt 1980; 19(9): 1505-1509. DOI: 10.1364/AO.19.001505. 
  26. Shybanov EB. The improved computational method of scattering calculations on spherical particles. Proc Int Conf "Current Problems in Optics of Natural Waters" (St. Petersburg, Russia) 2001: 383-389. 
  27. BazhanV. ScatLab 1.2 Package. 2003. Source: http://www.scatlab.com

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20