(27) * << * >> * Russian * English * Content * All Issues

Calculating the pressure force of the non-paraxial cylindrical Gaussian beam exerted upon a homogeneous circular-shaped cylinder

V.V. Kotlyar 1, 2, A.G. Nalimov 1, 2
1Image Processing Systems Institute of RAS
2Samara State Aerospace University (SSAU)

 PDF, 129 kB

Pages: 105-111.

Full text of article: Russian language.

Forces exerted upon a dielectric cylinder of infinite length and arbitrary, or circular, cross-section by the non-paraxial cylindrical Gaussian beam are considered. The projections of the vector of the light force pressure exerted upon a dielectric cylinder of arbitrary and circular cross-section are expressed analytically. In particular, the pressure force is expressed through the coefficients of decomposition of the non-paraxial Gaussian beam into the cylindrical functions. Using numerical examples, a possibility to optically trap a circular-shaped cylinder in two oppositely directed Gaussian beams or a single non-paraxial Gaussian beam is demonstrated.

non-paraxial Gaussian beam, circular-shaped cylinder, circular cross-section, optically trap.

Kotlyar VV, Nalimov AG. Calculating the pressure force of the non-paraxial cylindrical Gaussian beam exerted upon a homogeneous circular-shaped cylinder. Computer Optics 2005; 27: 105-111.

This work was supported by the Russian-American program "Basic Research and Higher Education" (BRHE), grant CRDF REC-SA-014-02 and the presidential grant NSh-1007.2003.01.


  1. Gouesbet G, Maheu B, Gréhan G. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Am A 1988; 5(9): 1437-1443. DOI: 10.1364/JOSAA.5.001427.
  2. Gouesbet G, Lock JA. A rigorous justification of the localized approximation to the beam-shape coefficients in the generalized Lorenz-Mie theory. II. Off-axis beams. J Opt Soc Am A 1994; 11(9): 2516-2525. DOI: 10.1364/JOSAA.11.002516.
  3. Ren F, Grehad G, Gouebet G. Radiation pressure forces exerted on a particle located arbitrarily in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects. Opt Commun 1994; 108(4-6): 343-354. DOI: 10.1016/0030-4018(94)90673-4.
  4. Gouesbet G. Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres. J Opt Soc Am A 1999; 16(7): 1641-1650. DOI: 10.1364/JOSAA.16.001641.
  5. Barton J, Alexander D, Schaub S. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J Appl Phys 1989; 66(10): 4594-4602. DOI: 10.1063/1.343813.
  6. Gussgard R, Lindmo T, Brevik I. Calculation of the trapping force in a strongly focused laser beam. J Opt Soc Am B 1992; 9(10): 1922-1930. DOI: 10.1364/JOSAB.9.001922.
  7. Rohrbach A, Stelzer EHK. Optical trapping of a dielectric particles in arbitrary fields. J Opr Soc Am A 2001; 18(4): 839-853. DOI: 10.1364/JOSAA.18.000839.
  8. Rohrbach A, Stelzer EHK. Trapping forces, force constant, and potential depths for dielectric spheres in the presence of spherical aberration. Appl Opt 2002; 41(13): 2494-2507. DOI: 10.1364/AO.41.002494.
  9. Lock JA. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. Appl Opt 2004; 43(12): 2532-2544. DOI: 10.1364/AO.43.002532.
  10. Lock JA. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force. Appl Opt 2004; 43(12): 2545-2554. DOI: 10.1364/AO.43.002545.
  11. Ganic D, Gan X, Gu M. Exact radiation trapping force calculation based on vectorial diffraction theory. Opt. Express 2004; 12(12): 2670-2675. DOI: 10.1364/OPEX.12.002670.
  12. Nieminen TA, Heckenberg NR, Rubinstein-Dunlop H. Computational modeling of optical tweezers. Proc SPIE 2004; 5514: 514-523. DOI: 10.1117/12.557090.
  13. Mazolli A, Maia Neto PA, Nussenzveig HM. Theory of trapping forces in optical tweezers. Proc Math Phys Eng Sci 2003; 459(2040): 3021-3041. DOI: 10.1098/rspa.2003.1164.
  14. Nahmias YK, Oddl DJ. Analysis of radiation forces in laser trapping and laser-guided direct writing application. IEEE J Quantum Electron 2002; 38(2): 131-141. DOI: 10.1109/3.980265.
  15. Pobre R, Saloma C. Radiation forces on nonlinear microsphere by a tightly focused Gaussian beam. Appl. Opt.2002; 41(36): 7694-7701. DOI: 10.1364/AO.41.007694.
  16. Marston PL, Crichton JH. Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave. Phys Rev A 1984; 30(5): 2508-2516. DOI: 10.1103/PhysRevA.30.2508.
  17. Zimmerman E, Dändliner R, Souli N, Krattiger B. Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach. J Opt Soc Am A 1995; 12(2): 398-403. DOI: 10.1364/JOSAA.12.000398.
  18. Wu Z, Guo L. Electromagnetic scattering from a multilayered cylinder arbitrarily located in a Gaussian beam, a new recursive algorithms. Prog Electromagn Res 1998; 18: 317-333. DOI: 10.2528/PIER97071100.
  19. Landau LD, Lifshitz EM. Shorter course of theoretical physics: Mechanics and electrodynamics, Volume 1. Oxford: Pergamon Press Ltd; 1972. ISBN: 978-0-08-016739-8.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20