(44-1) 06 * << * >> * Russian * English * Content * All Issues
  
Limits of applicability  of the direct ray approximation in modeling optical properties of  liquid-crystal diffraction gratings
D.D. Yakovlev 1, D.A. Yakovlev 1
  1 Saratov State University,  Saratov, Russia
 PDF, 1008 kB
  PDF, 1008 kB
DOI: 10.18287/2412-6179-CO-562
Pages: 40-52.
Full text of article: Russian language.
 
Abstract:
Using computer modeling,  we estimate limits of applicability of the direct ray approximation in modeling  the optical properties of liquid-crystal diffraction gratings with continuous  spatial modulation of the local optic axis orientation in a liquid crystal  layer. The data presented concerning the influence of the spatial frequency and  character of modulation of the local optic axis, as well as the magnitude of  birefringence of the medium, on the accuracy of the results obtained in this  approximation are also useful in considering birefringent layers with an  aperiodic variation of the local optic axis.
Keywords:
diffraction and  gratings, optical devices, physical optics, birefringent diffraction gratings,  direct ray approximation, modal grating method.
Citation:
  Yakovlev DD, Yakovlev  DA. Limits of applicability of the direct ray approximation in modeling optical  properties of liquid-crystal diffraction gratings. Computer Optics 2020; 44(1): 40-52. DOI: 10.18287/2412-6179-CO-562.
Acknowledgements:
This  work was supported by the Ministry of Education and Science of the Russian Federation under Grant  #3.1586.2017/4.6 and the Russian Foundation for Basic Research under Grant  #18-52-16025/18.
References:
  - Schadt  M, Seiberie H, Schuster A. Optical patterning of multi-domain liquid-crystal  displays with wide viewing angles. Nature 1996; 381(6579): 212-215. DOI:  10.1038/381212a0.
- Eakin JN, Xie Y, Pelcovits RA, Radcliffe MD, Crawford GP. Zero voltage  Freedericksz transition in periodically aligned liquid crystals. Appl Phys Lett  2004; 85(10): 1671-1673. DOI: 10.1063/1.1789578.
- Escuti MJ, Jones WM. Polarization-independent switching  with high contrast from a liquid crystal polarization grating. SID Symposium  Digest of Technical Papers 2006; 37(1): 1443-1446. DOI: 10.1889/1.2433259.
 
- Provenzano C, Pagliusi P, Cipparrone G. Highly efficient liquid crystal  based diffraction grating induced by polarization holograms at the aligning  surfaces. Appl Phys Lett 2006; 89(12): 121105. DOI: 10.1063/1.2355456.
 
- Sarkissian H, Serak SV, Tabiryan NV, Glebov LB, Rotar V, Zeldovich BYa.  Polarization-controlled switching between diffraction orders in  transverse-periodically aligned nematic liquid crystals. Opt Lett 2006; 31(15):  2248-2250. DOI: 10.1364/OL.31.002248.
 
- Komanduri RK, Escuti MJ. Elastic continuum analysis of the liquid  crystal polarization grating. Phys Rev E 2007; 76(2): 021701. DOI:  10.1103/PhysRevE.76.021701.
 
- Komanduri RK, Jones WM, Oh C, Escuti MJ. Polarization-independent  modulation for projection displays using small-period LC polarization gratings.  Journal of the Society for Information Display 2007; 15(8): 589-594. DOI:  10.1889/1.2770860.
 
- Nicolescu E, Escuti MJ. Polarization-independent tunable optical filters  based on liquid crystal polarization gratings. Proc SPIE 2007; 6654: 665405.  DOI: 10.1117/12.735305.
 
- Serak S, Tabiryan N, Zeldovich B. High-efficiency 1.5 mm  thick optical axis grating and its use for laser beam combining. Opt Express  2007; 32(2): 169-171. DOI: 10.1364/OL.32.000169.
 
- Komanduri RK, Escuti MJ. High efficiency reflective liquid crystal  polarization gratings. Appl Phys Lett 2009; 95(9): 091106. DOI:  10.1063/1.3197011.
 
- Nersisyan SR, Tabiryan   NV, Steeves DM, Kimball BR.  Characterization of optically imprinted polarization gratings. Appl Opt 2009;  48(21): 4062-4067. DOI: 10.1364/AO.48.004062.
 
- Nicolescu E, Escuti MJ. Polarization-independent tunable optical filters  using bilayer polarization gratings. Appl Opt 2010; 49(20): 3900-3904. DOI:  10.1364/AO.49.003900.
 
- Kudenov MW, Escuti MJ, Dereniak EL, Oka  K. White-light channeled imaging polarimeter using broadband polarization  gratings. Appl Opt 2011; 50(15): 2283-2293. DOI: 10.1364/AO.50.002283.
 
- Crawford GP, Eakin JN, Radcliffe MD, Callan-Jones A,  Pelcovits RA. Liquid-crystal diffraction gratings using polarization holography  alignment techniques. J Appl Phys 2005; 98(12): 123102. DOI: 10.1063/1.2146075.
 
- Wu    WY, Li MS, Lin HC, Fuh AY-G.  Two-dimensional holographic polarization grating formed on azo-dye-doped  polyvinyl alcohol films. J Appl Phys 2008; 103(8): 083119. DOI:  10.1063/1.2907959.
 
- Hu W, Srivastava AK, Lin X-W, Liang X, Wu Z-J, Sun  J-T, Zhu G, Chigrinov V, Lu Y-Q. Polarization independent liquid crystal  gratings based on orthogonal photoalignments. Appl Phys Lett 2012; 100(11):  111116. DOI: 10.1063/1.3694921.
 
- Honma M, Nose T. Twisted nematic liquid crystal polarization  grating with the handedness conservation of a circularly polarized state. Opt  Express 2012; 20(16): 18449-18458. DOI: 10.1364/OE.20.018449.
 
- Kawai K, Sasaki T, Noda K, Kawatsuki N, Ono H. Simple fabrication of  liquid crystal-line grating cells with homogeneous and twisted nematic  structures and effects of orientational relaxation on diffraction properties.  Appl Opt 2014; 53(17): 3679-3686. DOI: 10.1364/AO.53.003679.
 
- Kawai  K, Sasaki T, Sakamoto M, Noda K, Kawatsuki N, Ono H. Diffraction properties of  a vector grating liquid crystal cell fabricated using a one-step expo-sure of a  nonorthogonal elliptically polarized interference beam. J Opt Soc Am B 2015;  32(12): 2435-2440. DOI: 10.1364/JOSAB.32.002435.
 
- Kawai K, Sasaki T, Noda K, Sakamoto M, Kawatsuki N,  Ono H. Holographic binary grating liquid crystal cells fabricated by one-step  exposure of photocrosslinkable polymer liquid crystalline alignment substrates  to a polarization interference ultraviolet beam. Appl Opt 2015; 54(19):  6010-6018. DOI: 10.1364/AO.54.006010.
 
- Provenzano C, Pagliusi P, Cipparrone G. Electrically  tunable two-dimensional liquid crystals gratings induced by polarization  holography. Opt Express 2007; 15(9): 5872-5878. DOI: 10.1364/OE.15.005872.
 
- Ringsdorf H, Urban C, Knoll W, Sawodny M. Photoreactive  chiral liquid-crystalline side-group copolymers containing azobenzene mesogens.  Die Makromolekulare Chemie 1992; 193(5): 1235-1247. DOI:  10.1002/macp.1992.021930520.
 
- Bobrovsky A, Ryabchun A, Cigl M, Hamplová V, Kašpar M,  Hampl F, Shibaev V. New azobenzene-based chiral-photochromic substances with  thermally stable Z-isomers and their use for the induction of a cholesteric  mesophase with a phototunable helix pitch. J Mater Chem C 2014; 2(40):  8622-8629. DOI: 10.1039/C4TC01167H.
 
- Ryabchun A, Bobrovsky A, Stumpe J, Shibaev V. Rotatable  diffraction gratings based on cholesteric liquid crystals with phototunable  helix pitch. Adv Opt Mater 2015; 3(9): 1273-1279. DOI: 10.1002/adom.201500159.
 
- Ryabchun A, Yakovlev D, Bobrovsky A, Katsonis N.  Dynamic diffractive patterns in helix-inverting cholesteric liquid crystals.  ACS Appl Mater Interfaces 2019; 11(11): 10895-10904. DOI: 10.1021/acsami.8b22465.
 
- Li  WS, Shen Y, Chen ZJ, Cui Q, Li SS, Chen LJ Demonstration of patterned  polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting  two-dimensional barcodes. Appl Opt 2017;  56(3): 601-606. DOI: 10.1364/AO.56.000601. 
 
- Yakovlev DA, Tsoy VI, Chigrinov VG. 5.4: Advanced  tools for modeling of 2D-optics of LCDs. SID Symposium Digest of Technical  Papers 2005; 36(1): 58-61. DOI: 10.1889/1.2036508.
 
- Carroll TO. Liquid-crystal diffraction grating. J Appl  Phys 1972; 43(3): 767-770. DOI: 10.1063/1.1661277.
 
- Desimpel C, Neyts K, Olivero D, Oldano C, de Boer DKG,  Cortie R. Optical transmission model for thin two-dimensional layers. Molecular  Crystals and Liquid Crystals 2004; 422(1): 185-195. DOI: 10.1080/15421400490502526.
 
- Yakovlev DA. Chigrinov VG, Kwok H-S. Modeling and  optimization of LCD optical performance. Chichester:  Wiley; 2015.
 
- Rokushima K, Yamakita J. Analysis of anisotropic dielectric  gratings. J Opt Soc Am A 1983; 73(7): 901-908. DOI: 10.1364/JOSA.73.000901.
 
- Matsumoto K, Rokushima K, Yamakita J.  Three-dimensional rigorous analysis of dielectric grating waveguides for  general cases of oblique propagation. J Opt Soc Am A 1993; 10(2): 269-276. DOI:  10.1364/JOSAA.10.000269.
 
- Galatola P,  Oldano C, Sunil Kumar PB. Symmetry  properties of anisotropic dielectric gratings. J Opt Soc Am A 1994; 11(4):  1332-1341. DOI: 10.1364/JOSAA.11.001332.
 
- Li L. Formulation and  comparison of two recursive matrix algorithms for modeling layered diffraction  gratings. J Opt Soc Am A 1996; 13(5): 1024-1035. DOI: 10.1364/JOSAA.13.001024.
 
- Li L. New formulation  of the Fourier modal method for crossed surface-relief gratings. J Opt Soc Am A  1997, 14(10): 2758-2767. DOI: 10.1364/JOSAA.14.002758.
 
- Peverini  OA, Olivero D, Oldano C, de Boer DKG, Cortie R, Orta R, Tascone R.  Reduced-order model technique for the analysis of anisotropic inhomogeneous  media: application to liquid-crystal displays. J Opt Soc Am A 2002; 19(9):  1901-1909. DOI: 10.1364/JOSAA.19.001901.
 
- Olivero D, Oldano C. Numerical methods for light  propagation in large LC cells: a new approach. Liquid Crystals 2003; 30(3):  345-353. DOI: 10.1080/0267829031000080996.
 
- Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable  implementation of the rigorous coupled-wave analysis for surface-relief gratings:  enhanced transmittance matrix approach. J Opt Soc Am A 1995; 12(5): 1077-1086.  DOI: 10.1364/JOSAA.12.001077.
 
- Oh C, Escuti MJ. Time-domain analysis of periodic anisotropic  media at oblique incidence: an efficient FDTD implementation. Opt Express 2006;  14(24): 11870-11884. DOI: 10.1364/OE.14.011870.
 
- Xiang X, Escuti MJ. Numerical Modeling of Polarization  Gratings by Rigorous Coupled Wave Analysis. Proc SPIE 2016; 9769: 976918. DOI:  10.1117/12.2218276.
 
- Xiang X, Kim J, Escuti MJ. Bragg polarization gratings  for wide angular bandwidth and high efficiency at steep deflection angles. Sci  Rep 2018; 8(7202): 1-6. DOI: 10.1038/s41598-018-25535-0.
 
- Soifer VA, ed. Diffractive nanophotonics. Boca Raton: CRC Press; 2014. ISBN: 978-1-4665-9069-4.
 
- Sherman MM, Yakovlev DA. Features of light transmission through monolayer of  structurally identical anisotropic domains with random azimuthal orientation.  Optics and Spectroscopy 2010; 109(2): 178-187. DOI:  10.1134/S0030400X10080059
 
- Yakovlev DD, Yakovlev DA. Scattering patterns of orthogonally  polarized light components for statistically rotationally invariant mosaic  birefringent layers. Optics and Spectroscopy 2019; 126(3): 245-256. 
 
- Kosmopoulos JA, Zenginoglou HM. Geometrical optics  approach to the nematic liquid crystal grating: numerical results. Appl Opt  1987; 26(9): 1714-1721. DOI: 10.1364/AO.26.001714.
 
- Helfrich W. Deformation of cholesteric liquid crystals  with low threshold voltage. Appl Phys Lett 1970; 17(12): 531-532. DOI:  10.1063/1.1653297.
 
- Helfrich W. Electrohydrodynamic and dielectric instabilities  of cholesteric liquid crystals. J Chem Phys 1971; 55(2): 839-842. DOI:  10.1063/1.1676151.
 
- Hurault JP. Static distortions of a cholesteric planar  structure induced by magnetic or ac electric fields. J Chem Phys 1973; 59(4):  2068-2075. DOI: 10.1063/1.1680293.
 
- Chigrinov VG, Belyaev VV, Belyaev SV, Grebenkin MF.  Instability of cholesteric liquid crystals in an electric field. Soviet Journal  of Experimental and Theoretical Physics 1979, 50: 994-999.
 
- Lavrentovich OD, Shiyanovskii SV, Voloschenko D. Fast  beam steering cholesteric diffractive devices. Proc SPIE 1999; 3787: 149-155.  DOI: 10.1117/12.351639.
 
- Senyuk B, Smalyukh I, Lavrentovich O. Electrically-controlled  two-dimensional gratings based on layers undulations in cholesteric liquid  crystals. Proc SPIE 2005; 5936: 59360W. DOI: 10.1117/12.615976.
 
- Scheffer TJ. Electric and magnetic field investigations  of the periodic gridlike deformation of a cholesteric liquid crystal. Phys Rev  Lett 1972; 28(10): 593-596. DOI: 10.1103/PhysRevLett.28.593.
 
- Tervo J, Turunen J. Paraxial-domain diffractive elements with 100%  efficiency based on polarization gratings. Opt Lett2000; 25(11): 785-786. DOI: 10.1364/OL.25.000785. 
 
- Yakovlev DA. Calculation of transmission characteristics of smoothly  inhomogeneous anisotropic media in the approximation of negligible smallness of  the bulk reflection: II. Numerical methods. Optics and Spectroscopy 2003;  94(4): 600-606. DOI:  10.1134/1.1570488.
 
- Yakovlev DA. Calculation of transmission characteristics of smoothly  inhomogeneous anisotropic media in the approximation of negligible smallness of  the bulk reflection: I. Basic equation. Optics  and Spectroscopy 1999; 87(6): 903-908. DOI: 10.1134/1.1635481. 
 
- Yakovlev DA.  Calculation of transmission characteristics of smoothly inhomogeneous  anisotropic media in the approximation of negligible smallness of the bulk reflection:  III. Analytical solutions. Optics and Spectroscopy 2003; 95(6): 944-951. DOI: 10.1134/1.1635481. 
- Yakovlev DA. Simple  formulas for the amplitude transmission and reflection coefficients at the  interface of anisotropic media. Optics and Spectroscopy 1998, 84(5): 748-752.
   
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20