(46-2) 08 * << * >> * Russian * English * Content * All Issues

A method for non-destructive testing of the strength of a silica optical fiber
 V.A. Andreev  1, A.V. Bourdine 1,2,  V.A. Burdin  1, M.V. Dashkov 1

FSBEI HE "Povolzhskiy State University of Telecommunications and Informatics",
443010, Samara, Russia, L'va Tolstogo st. 23,
S.I. Vavilov State Optical Institute, 199034, St. Petersburg, Russia, Birzhevaya Liniya 12

 PDF, 811 kB

DOI: 10.18287/2412-6179-CO-1015

Pages: 224-231.

Full text of article: Russian language.

Abstract:
The paper proposes a method for non-destructive testing of the strength of an optical fiber based on estimates of the energy of nonlinear acoustic emission, based on the use of the tested optical fiber as an acoustic sensor. Models of the processes on which the method is based are presented. Results of experimental studies are presented. Data obtained from testing samples of the optical cables and optical fibers by the proposed method are compared with measurement results for the same samples obtained by the known 2-point method. The error in the estimates of the relative strength of the tested samples of optical fibers is found not to exceed 3.0 %. The results obtained allow us to suggest that the models used are correct and the proposed method shows promise for non-destructive testing of the strength of optical fibers, with the further development of the considered approach showing prospects for the application for non-destructive testing of the strength of optical fibers in a cable, including in-service cables.

Keywords:
fiber optics, strength, microcrack, acoustic impact, nonlinear acoustic emission, fiber-optic acoustic sensor.

Citation:
Andreev VA, Bourdine AV, Burdin VA, Dashkov MV. A method for non-destructive testing of the strength of a silica optical fiber. Computer Optics 2022; 46(2): 224-231. DOI: 10.18287/2412-6179-CO-1015.

References:

  1. ITU-T G-series Recommendations. Supplement 59, Series G: Transmission systems and media, digital systems and networks, Guidance on optical fibre and cable reliability. Source: <www.itu.int/ITU-T/recommendations/rec.aspx?id=13585&lang=en>.
  2. IEC TR 62048:2014. Optical fibres. Reliability. Power law theory. Source: <www.standards.iteh.ai/catalog/standards/iec/ec106772-ad49-4820-9b71-6fd8a1af37e4/iec-tr-62048-2014>.
  3. Mitsunaga Y, Katsuyama Y, Ishida Y. Reliability assurance for long-length optical fibre based on proof testing. Electron Lett 1981; 17(16): 567. DOI: 10.1049/el:19810398.
  4. Mitsunaga Y, Katsuyama Y, Kobayashi H, Ishida Y. Failure prediction for long length optical fiber based on proof testing. J Appl Phys 1982; 53(7): 4847-4853. DOI: 10.1063/1.331316.
  5. Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photon Technol Lett 1989; 1(5): 107-108. DOI: 10.1109/68.34756.
  6. Sankawa I, Koyamada Y, Furukawa S ichi, Horiguchi T, Tomita N, Wakui Y. Optical fiber line surveillance system for preventive maintenance based on fiber strain and loss monitoring. IEICE Trans Commun 1993; E76-B(4): 402-409.
  7. Anderson DR, Johnson LM, Bell FG. Troubleshooting optical fiber networks: Understanding and using optical time-domain reflectometers. 1st ed. New York, NY: Academic Press; 2004. ISBN: 978-0-387-09847-0.
  8. Evans AG, Wiederhorn SM. Proof testing of ceramic materials: an analytical basis for failure prediction. Int J Fract 1974; 10(3): 379-392. DOI: 10.1007/BF00035499.
  9. Ritter JE, Jakus K. Applicability of crack velocity data to lifetime predictions for fused silica fibers. J Am Ceram Soc 1977; 60(3-4): 171-171. DOI: 10.1111/j.1151-2916.1977.tb15500.x.
  10. Hanson TA, Glaesemann GS. Incorporating multi-region crack growth into mechanical reliability predictions for optical fibres. J Mater Sci 1997; 32(20): 5305-5311. DOI: 10.1023/A:1018662727060.
  11. Semjonov S, Glaesemann SG. High-speed tensile testing of optical fibers – new understanding for reliability prediction. In Book: Suhir E, Lee YC, Wong CP, eds. Micro- and opto-electronic materials and structures: Physics, mechanics, design, reliability, packaging. Boston, MA: Springer US; 2007: A595-A625. DOI: 10.1007/0-387-32989-7_18.
  12. IEC 60793-1-31:2010 Optical fibres – Part 1-31: Measurement methods and test procedures – Tensile strength. Geneva: International Electrotechnical Commission; 2010. ISBN: 978-2-88910-916-6.
  13. IEC 60793-1-33:2001 Optical fibres – Part 1-33: Measurement methods and test procedures – Stress corrosion susceptibility. Geneva, Switzerland: International Electrotechnical Commission; 2017. ISBN: 978-2-8322-4736-5.
  14. Ono K. Structural integrity evaluation using acoustic emission. J Acoustic Emission 2007; 25: 1-20. DOI: 10.1201/9780203892220.pt1.
  15. Kaphle M, Tan A, Thambiratnam D, Chan T. Review: Acoustic emission technique – Opportunities, challenges and current work at QUT. In Book: Cowled CJL, ed. Proc First Int Conf on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing. Australia: Queensland University of Technology; 2011: 312-317.
  16. Beattie AG. Acoustic emission non-destructive testing of structures using source location techniques: Sandia report. SAND2013-7779. Albuquerque, NM, US: Sandia National Laboratories; 2013. DOI: 10.2172/1096442.
  17. Gholizadeh S, Leman Z, Baharudin BTHT. A review of the application of acoustic emission technique in engineering. Struct Eng Mech 2015; 54(6): 1075-1095. DOI: 10.12989/SEM.2015.54.6.1075.
  18. Świt G, Adamczak A, Krampikowska A. Time-frequency analysis of acoustic emission signals generated by the Glass Fibre Reinforced Polymer Composites during the tensile test. IOP Conf Ser: Mater Sci Eng 2017; 251: 012002. DOI: 10.1088/1757-899X/251/1/012002.
  19. Sial TR, Jin Y, Juan Z. Crack identification in Beams by Vibration based analysis techniques – A review. Int J Sci Technol Eng 2018; 07(10): 766-771.
  20. Cowking A, Attou A, Siddiqui AM, Sweet MAS, Hill R. Testing E-glass fibre bundles using acoustic emission. J Mater Sci 1991; 26(5): 1301-1310. DOI: 10.1007/BF00544469.
  21. Jihan S, Siddiqui AM, Sweet MAS. Fracture strength of E-glass fibre strands using acoustic emission. NDT & E International 1997; 30(6): 383-388. DOI: 10.1016/S0963-8695(97)00009-1.
  22. R’Mili M, Moevus M, Godin N. Statistical fracture of E-glass fibres using a bundle tensile test and acoustic emission monitoring. Compos Sci Technol 2008; 68(7-8): 1800-1808. DOI: 10.1016/j.compscitech.2008.01.018.
  23. Udd E, Spillman WB, eds. Fiber optic sensors: an introduction for engineers and scientists. 2nd ed. Hoboken, N.J: John Wiley & Sons; 2011. ISBN: 978-0-470-12684-4.
  24. Volkov OA, Demin AV, Konstantinov KV. An optical system of a sensor for measuring the meteorological optical range. Computer Optics 2018; 42(1): 67-71. DOI: 10.18287/2412-6179-2018-42-1-67-71.
  25. Morozov OG, Sakhabutdinov AJ. Addressed fiber Bragg structures in quasi-distributed microwave-photonic sensor systems. Computer Optics 2019; 43(4): 535-543. DOI: 10.18287/2412-6179-2019-43-4-535-543.
  26. Pevec S, Donlagić D. Multiparameter fiber-optic sensors: a review. Opt Eng 2019; 58(7): 072009. DOI: 10.1117/1.OE.58.7.072009.
  27. Kazanskiy NL, Butt MA, Degtyarev SA, Khonina SN. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index. Computer Optics 2020; 44(3): 295-318. DOI: 10.18287/2412-6179-CO-743.
  28. Teixeira JGV, Leite IT, Silva S, Frazão O. Advanced fiber-optic acoustic sensors. Photonic Sens 2014; 4(3): 198-208. DOI: 10.1007/s13320-014-0148-5.
  29. Muanenda Y. Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry. J Sens 2018; 2018: 3897873. DOI: 10.1155/2018/3897873.
  30. He Z, Liu Q, Fan X, Chen D, Wang S, Yang G. A review on advances in fiber-optic distributed acoustic sensors (DAS). CLEO Pacific Rim Conference, OSA Technical Digest 2018: Th2L.1. DOI: 10.1364/CLEOPR.2018.Th2L.1.
  31. Xiong W, Cai CS. Development of fiber optic acoustic emission sensors for applications in civil infrastructures. Adv Struct Eng 2012; 15(8): 1471-1486. DOI: 10.1260/1369-4332.15.8.1471.
  32. Gordon RB, Davis LA. Velocity and attenuation of seismic waves in imperfectly elastic rock. J Geophys Res 1968; 73(12): 3917-3935. DOI: 10.1029/JB073i012p03917.
  33. Savage JC. Thermoelastic attenuation of elastic waves by cracks. J Geophys Res 1966; 71(16): 3929-3938. DOI: 10.1029/JZ071i016p03929.
  34. Mavko GM, Nur A. The effect of nonelliptical cracks on the compressibility of rocks. J Geophys Res 1978; 83(B9): 4459. DOI: 10.1029/JB083iB09p04459.
  35. Mavko GM. Frictional attenuation: An inherent amplitude dependence. J Geophys Res 1979; 84(B9): 4769. DOI: 10.1029/JB084iB09p04769.
  36. Stewart RR, Toksoz MN, Timur A. Strain dependent attenuation: Observations and a proposed mechanism. J Geophys Res 1983; 88(B1): 546. DOI: 10.1029/JB088iB01p00546.
  37. Mavko G, Jizba D. The relation between seismic P- and S-wave velocity dispersion in saturated rocks. Geophysics 1994; 59(1): 87-92. DOI: 10.1190/1.1443537.
  38. Zaitsev VY, Sas P. Dissipation in microinhomogeneous solids: inherent amplitude-dependent losses of a non-hysteretical and non-frictional type. Acta Acustica united with Acustica 2000; 86(3): 429-445.
  39. Zaitsev V, Gusev V, Castagnede B. Luxemburg-Gorky effect retooled for elastic waves: A mechanism and experimental evidence. Phys Rev Lett 2002; 89(10): 105502. DOI: 10.1103/PhysRevLett.89.105502.
  40. Moussatov A, Gusev V, Castagnède B. Self-induced hysteresis for nonlinear acoustic waves in cracked material. Phys Rev Lett 2003; 90(12): 124301. DOI: 10.1103/PhysRevLett.90.124301.
  41. Zaitsev VYu, Gusev VÉ, Nazarov VE, Castagnéde B. Interaction of acoustic waves with cracks: Elastic and inelastic nonlinearity mechanisms on different time scales. Acoust Phys 2005; 51(S1): S67-S77. DOI: 10.1134/1.2133955.
  42. Fillinger L, Zaitsev VY, Gusev V, Castagnede B. Nonlinear relaxational absorption/transparency for acoustic waves due to thermoelastic effect. Acta Acustica united with Acustica 2006; 92: 24-34.
  43. Tszeng TC. Modulation spectroscopy of acoustic waves in solids containing contact-type cracks. J Vib Acoust 2013; 135(6): 064504. DOI: 10.1115/1.4025017.
  44. Broda D, Staszewski WJ, Martowicz A, Uhl T, Silberschmidt VV. Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—A review. J Sound Vib 2014; 333(4): 1097-1118. DOI: 10.1016/j.jsv.2013.09.033.
  45. Pieczonka L, Klepka A, Martowicz A, Staszewski WJ. Nonlinear vibroacoustic wave modulations for structural damage detection: an overview. Opt Eng 2015; 55(1): 011005. DOI: 10.1117/1.OE.55.1.011005.
  46. Lee BH, Kim YH, Park KS, Eom JB, Kim MJ, Rho BS, Choi HY. Interferometric fiber optic sensors. Sensors 2012; 12(3): 2467-2486. DOI: 10.3390/s120302467.
  47. Mecholsky JJ, Rice RW, Freiman SW. Prediction of fracture energy and flaw size in glasses from measurements of mirror size. J Am Ceram Soc 1974; 57(10): 440-443. DOI: 10.1111/j.1151-2916.1974.tb11377.x.
  48. Castilone RJ, Glaesemann GS, Hanson TA. Relationship between mirror dimensions and failure stress for optical fibers. Proc SPIE 2002; 4639: 11-20. DOI: 10.1117/12.481339.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20