(46-2) 09 * << * >> * Russian * English * Content * All Issues

Estimation of the cross-wind speed from turbulent fluctuations of the image of a diffuse target illuminated by a laser beam
D.A. Marakasov 1, A.L. Afanasiev 1, V.A. Banakh 1, A.P. Rostov 1, V.V. Kuskov 1

V.E. Zuev Institute of Atmospheric Optics SB RAS,
634055, Tomsk, Russia, Academician Zuev Square 1

 PDF, 998 kB

DOI: 10.18287/2412-6179-CO-1025

Pages: 232-238.

Full text of article: Russian language.

The article presents an optical method for assessing the transverse wind, based on the analysis of turbulent distortions of the image of a diffuse target illuminated by a laser beam. The proposed correlation algorithm for processing video images allows one to assess in real time the crosswind speed using one receiving lens when the target is illuminated in the visible or infrared range. An experimental check of the method on the atmospheric path has been carried out. The optical estimates of the integral wind are compared with the data of independent local measurements of six ultrasonic anemometers located along the sensing path.

optical remote sensing technologies, wind speed, turbulence, image processing.

Marakasov DA, Afanasiev AL, Banakh VA, Rostov AP, Kuskov VV. Estimation of the cross-wind speed from turbulent fluctuations of the image of a diffuse target illuminated by a laser beam. Computer Optics 2022; 46(2): 232-238. DOI: 10.18287/2412-6179-CO-1025.

In this work, the analytical and numerical studies were funded by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences). Organization and implementation of the experimental measurements was funded by the Russian Foundation for Basic Research and Tomsk region authorities (project No. 18-42-700005 r_a).


  1. Porat O, Shapira J. Crosswind sensing from optical-turbulence-induced fluctuations measured by a video camera. Appl Opt 2010; 49(28): 5236-5244. DOI: 10.1364/AO.49.005236.
  2. Afanasiev AL, Banakh VA, Rostov AP. Estimation of the integral wind velocity and turbulence in the atmosphere from distortions of optical images of naturally illuminated objects. Atmos Ocean Opt 2016; 29(5): 422-430. DOI: 10.1134/S102485601605002X.
  3. Clifford SF, Ochs GR, Wang T-I. Optical wind sensing by observing the scintillations of a random scene. Appl Opt 1975; 14(12): 2844-2850. DOI: 10.1364/AO.14.002844.
  4. Walters DL. Passive remote crosswind sensor. Appl Opt 1977; 16(10): 2625-2626. DOI: 10.1364/AO.16.002625.
  5. Dudorov VV, Eremina AS. Retrieval of crosswind velocity based on the analysis of remote object images: Part 2 – Drift of turbulent volume. Atmospheric Ocean Opt 2017; 30(6): 596-603. DOI: 10.1134/S1024856017060069.
  6. Afanas'ev AL, Dudorov VV, Mikhailov YuT, Nasonova AS, Rostov AP, Shestakov ShO. Retrieval of crosswind velocity based on the analysis of remote object images: Part 3 – Experimental test. Atmospheric Ocean Opt 2020; 33(6): 690-695. DOI: 10.1134/S1024856020060020.
  7. Antoshkin LV, Lavrinov VV, Lavrinova LN, Lukin VP. Differential method for wavefront sensor measurements of turbulence parameters and wind velocity. Atmospheric Ocean Opt 2008; 21(01): 64-68.
  8. Antoshkin LV, Lavrinov VV, Lavrinova LN, Lukin VP. Measurement of crossing wind transfer of atmospheric turbulence by Shack-Hartmann sensor. Mining informational and analytical bulletin (scientific and technical journal) 2009; 17(12): 129-133.
  9. Avila R, Valdes-Hernandez O, Sanchez LJ, Cruz-Gonzalez I, Aviles JL, Tapia-Rodríguez JJ, Zuniga CA Simultaneous generalized and low-layer SCIDAR turbulence profiles at San Pedro Martir observatory. Mon Notices Royal Astron Soc 2019; 490(1): 1397-1405. DOI: 10.1093/mnras/stz2672.
  10. Banakh VA, Marakasov DA, Vorontsov MA. Cross-wind profiling based on the scattered wave scintillations in a telescope focus. Appl Opt 2007; 46(33): 8104-8117. DOI: 10.1364/AO.46.008104.
  11. Banakh VA, Marakasov DA. Reconstruction of the wind velocity profile by the intensity fluctuations of a scattered wave in a receiving telescope. Quantum Electron 2008; 38(9): 889-894. DOI: 10.1070/QE2008v038n09ABEH013706.
  12. Tatarskii VI. The effects of the turbulent atmosphere on wave propagation. Jerusalem: Israel Program for Scientific Translations; 1971.
  13. Abramovitz M, Stigun IA, eds. Handbook of mathematical functions with fomulas, graphs and mathematical tables: reference book. Wasington DC: National Bureau of Standards; 1964.
  14. Coles WA, Filice JP, Frehlich RG, Yadlowsky M. Simulation of wave propagation in three-dimensional random media. Appl Opt 1995; 34(12): 2089-2101. DOI: 10.1364/AO.34.002089.
  15. Fleck JA Jr, Morris JR, Feit MD. Time-dependent propagation of high energy laser beams through the atmosphere. Appl Phys 1976; 10(2): 129-160. DOI: 10.1007/BF00882638.
  16. Martin JM, Flatte SM. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media. Appl Opt 1988; 27(11): 2111-2126. DOI: 10.1364/AO.27.002111.
  17. Kandidov VP. Monte Carlo method in nonlinear statistical optics. Physics-Uspekhi 1996; 39(12): 1243-1272. DOI: 10.1070/pu1996v039n12abeh000185.
  18. Banakh VA, Falits AV. Turbulent statistics of laser beam intensity on ground-to-satellite optical link. Proc SPIE 2001; 4678: 132-143. DOI: 10.1117/12.458432.
  19. Banakh VA. Image simulation of a laser-illuminated scattering layer in turbulent atmosphere. Atmospheric Ocean Opt 2007; 20(04): 271-274.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20