(47-2) 02 * << * >> * Russian * English * Content * All Issues

A metalens-based optical polarization sensor
A.G. Nalimov 1,2, V.V. Kotlyar 1,2, S.S. Stafeev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1655 kB

DOI: 10.18287/2412-6179-CO-1254

Pages: 208-214.

Full text of article: Russian language.

Abstract:
An optical microsensor of the laser light polarization state based on a metalens is proposed. Well-known polarization sensors based on metasurfaces usually transmit different types of polarization at different angles to the optical axis. The polarization sensor proposed in this work forms different patterns for different polarization types at the metalens focus. Specifically, the left-handed circular polarization at the focus forms a ring-shaped spot, the right-handed circular polarization - a round focal spot, and linear polarization forms an elliptical spot with two side lobes. Moreover, the angle of inclination of the elliptical focal spot corresponds to the angle of inclination of the initial E-vector of the linearly polarized beam. The simulation is consistent with theoretical predictions. A 30-μm metalens with a low aspect ratio, high numerical aperture, and short focal length equal to the incident wavelength 633 nm in a 120-nm thick thin film of amorphous silicon is designed, fabricated and characterized.

Keywords:
topological charge, optical vortex, multifocal metalens.

Citation:
Nalimov AG, Kotlyar VV, Stafeev SS. A metalens-based optical polarization sensor. Computer Optics 2023; 47(2): 208-214. DOI: 10.18287/2412-6179-CO-1254.

Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant #22-22-00265 (Sections “Theoretical background”, “Simulation”) and the RF Ministry of Science and Higher Education within a state contract with the FSRC "Crystallography and Photonics" RAS (Sections “Introduction”, “Conclusion”).

References:

  1. Chipman RA. Polarimetry. In Book: Bass M, ed. Handbook of optics: Volume I – Geometrical and physical optics, polarized light, components and instruments. 3rd ed. Chap 15. The McGraw-Hill Companies Inc; 2010.
  2. Gruev V, Perkins R, York T. CCD polarization imaging sensor with aluminum nanowire optical filters. Opt Express 2010; 18: 19087-19094.
  3. Dai D, Bauters J, Bowers JE. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci Appl 2012; 1: e1.
  4. Afshinmanesh F, White JS, Cai W, Brongersma ML. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 2012; 1(2): 125-129. DOI: 10.1515/nanoph-2012-0004.
  5. Turner MD. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat Photonics 2013; 7: 801-805.
  6. Khorasaninejad M, Crozier K. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat Commun 2014; 5: 5386. DOI: 10.1038/ncomms6386.
  7. Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurfaceoptical elements. Science 2014; 345(6194): 298-302.
  8. Dandan W, Fuyong Y, Santosh K, Yong M, Ming C, Ximing R, Peter EK, Brian DG, Mohammad RT, Gerald SB, Xianzhong C. Metasurface for characterization of the polarization state of light. Opt Express 2015; 23: 10272-10281.
  9. Wen D, Yue F, Li G. Helicity multiplexed broadband metasurface holograms. Nat Commun 2015; 6: 8241. DOI: 10.1038/ncomms9241.
  10. Khorasaninejad M, Chen WT, Zhu AY, Oh J, Devlin RC, Rousso D, Capasso F. Multispectral chiral imaging with a metalens. Nano Lett 2016; 16(7): 4595-4600. DOI: 10.1021/acs.nanolett.6b01897.
  11. Ma YI, Han J, Wang R, Chen X. Polarization detection using light’s orbital angular momentum. Adv Opt Mater 2020; 8(18): 2000484.
  12. Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
  13. Kotlyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36(10): 2850-2855. DOI: 10.1364/JOSAB.36.002850.
  14. Stafeev SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for polarization conversion and focusing of laser light. Photonics Nanostruct 2017; 27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.
  15. González-Rubio G, Mosquera J, Kumar V, Pedrazo-Tardajos A, Llombart P, Solís DM, Lobato I, Noya EG, Guerrero-Martínez A, Taboada JM, Obelleiro F, MacDowell LG, Bals S, Liz-Marzán LM. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2021; 368(6498): 1472-1477.
  16. McGuire BA, Brandon Carroll P, Loomis RA, Finneran IA, Jewell PR, Remijan AJ, Blake GA. Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 2021; 352(6292): 1449-1452.
  17. Ghosh N, Vitkin AI. Tissue polarimetry: concepts, challenges, applications, and outlook. J Biomed Opt 2011; 16(11): 110801. DOI: 10.1117/1.3652896.
  18. Wang Y, He H, Chang J, He C, Liu S, Li M, Zeng N, Wu J, Ma H. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J Biomed Opt 2016; 21(7): 71112. DOI: 10.1117/1.JBO.21.7.071112.
  19. Chen Z, Meng R, Zhu Y, Ma H. A collinear reflection Mueller matrix microscope for backscattering Mueller matrix imaging. Opt Lasers Eng 2020; 129: 106055.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20