(47-2) 03 * << * >> * Russian * English * Content * All Issues
  
High-Q tunable Fano resonances in the curved waveguide resonator with mirrors with spatially variable reflectivity
  A.V. Dyshlyuk 1,2,3, O.B. Vitrik 1,2
  1 IACP FEB RAS, 690041, Russia, Vladivostok, Radio Str. 5;
  2 Far Eastern Federal University, 690091, Russia, Vladivostok, Sukhanova Str. 8;
  3 Vladivostok State University of Economics and Service, 690014, Russia, Vladivostok, Gogolya Str. 41
  PDF, 2145 kB
DOI: 10.18287/2412-6179-CO-1183
Pages: 215-223.
Full text of article: Russian language.
 
Abstract:
High-Q Fano resonances  are demonstrated, as well as effects similar to electromagnetically induced  transparency arising in a curved Fabry-Perot waveguide resonator with  variable-reflection mirrors. It is shown that these effects arise as a result  of coupling the fundamental mode of the bent waveguide core with whispering  gallery cladding modes. An influence of the main geometrical parameters of the  resonator on the resonance features in its reflection and transmission spectra  is studied. The results obtained can be used in the creation of new functional  elements of photonics based on curved waveguides, in particular, highly  sensitive portable refractometers for bio- and chemosensory systems, as well as  optical sensors of mechanical effects.
Keywords:
Fano resonance, electromagnetically  induced transparency, bent waveguide, whispering gallery mode, optical refractometry.
Citation:
  Dyshlyuk AV, Vitrik OB. High-Q tunable Fano resonances in the curved waveguide resonator with mirrors with spatially variable reflectivity. Computer Optics 2023; 47(2): 215-223. DOI: 10.18287/2412-6179-CO-1183.
Acknowledgements:
  This work was supported by the Russian Foundation for Basic Research under project No. 20-02-00556А.
References:
  - Fano U. Effects of configuration interaction on  intensities and phase shifts. Phys Rev 1961; 124(6): 1866.
 
  - Limonov MF, et al. Fano resonances in photonics. Nat  Photon 2017; 11(9): 543-554. 
   - Garrido  Alzar CL, Martinez MAG, Nussenzveig P. Classical analog of electromagnetically  induced transparency. Am J Phys 2002; 70(1): 37-41.
     - Fan  S, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance  in optical resonators. J Opt Soc Am A 2003; 20(3): 569-572.
     - Wang  F, et al. Fano-resonance-based Mach-Zehnder optical switch employing dual-bus  coupled ring resonator as two-beam interferometer. Opt Express 2009; 17(9):  7708-7716.
     - Luk'yanchuk  B, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat  Mater 2010; 9(9): 707.
     - Chong  KE, et al. Observation of Fano resonances in all-dielectric nanoparticle  oligomers. Small 2014; 10(10): 1985-1990.
     - Kuznetsov  AI, et al. Optically resonant dielectric nanostructures. Science 2016;  354(6314): aag2472.
     - Miroshnichenko  AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev Mod Phys  2010; 82(3): 2257.
     - Rahmani  M, Luk'yanchuk B, Hong M. Fano resonance in novel plasmonic nanostructures. Laser  Photonics Rev 2013; 7(3): 329-349.
     - Yu  Y, et al. Demonstration of a self-pulsing photonic crystal Fano laser. Nat  Photon 2017; 11(2): 81.
     - Lu H,  et al. Plasmonic nanosensor based on Fano resonance in waveguide-coupled  resonators. Opt Lett 2012; 37(18): 3780-3782.
     - Zhang  S, et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to  increased-sensitivity localized surface plasmon resonance sensors revealed. Nano  Lett 2011; 11(4): 1657-1663.
     - Cetin  AE, Altug H. Fano resonant ring/disk plasmonic nanocavities on conducting  substrates for advanced biosensing. ACS Nano 2012; 6(11): 9989-9995.
     - Wu C,  et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy  and identification of molecular monolayers. Nat Mater 2012; 11(1): 69.
     - Singh  R, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in  metasurfaces. Appl Phys Lett 2014; 105(17): 171101.
     - Dyshlyuk  AV. Tunable Fano-like resonances in a bent single-mode waveguide-based  Fabry–Perot resonator. Opt Lett 2019; 44(2): 231-234.
     - Dyshlyuk  AV, Eryusheva UA, Vitrik OB. Tunable Autler-Townes-like resonance splitting in  a bent fiber-optic Fabry-Perot resonator: 3D modeling and experimental verification.  J Lightw Technol 2020; 38(24): 6918-6923.
     - Novotny  L. Strong coupling, energy splitting, and level crossings: A classical  perspective. Am J Phys 2010; 78(11): 1199-1202.
     - Snyder  AW, Love J. Optical waveguide theory. Berlin: Springer Science & Business  Media; 2012.
     - Johnson  PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972; 6(12):  4370.
     - Dyshlyuk  AV, et al. Numerical and experimental investigation of surface plasmon  resonance excitation using whispering gallery modes in bent metal-clad  single-mode optical fiber. J Lightw Technol 2017; 35(24): 5425-5431.
     - Wang  P, et al. Macrobending single-mode fiber-based refractometer. Appl Opt 2009;  48(31): 6044-6049.
     - Wang  P, et al. A macrobending singlemode fiber refractive index sensor for low  refractive index liquids. Photonics Lett Pol 2010; 2(2): 67-69.
     - Kulchin  YN, Vitrik OB, Gurbatov SO. Effect of small variations in the refractive index  of the ambient medium on the spectrum of a bent fibre-optic Fabry–Perot  interferometer. Quantum Electron 2011; 41(9): 821.
     - Homola  J. Surface plasmon resonance based sensors. Berlin, Heidelberg: Springer; 2006.     
    
 - Svelto O, Hanna DC. Principles of lasers. New York: Plenum Press; 1998.
      
      
    
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20