(49-3) 04 * << * >> * Russian * English * Content * All Issues
  
Optical vortices in add-drop filters
 B.P. Lapin 1, S.S. Aliyeva 1, M.A. Yavorsky 1, C.N. Alexeyev 1
 1 V.I. Vernadsky Crimean Federal University,
  Prospekt Vernadskogo 4, Simferopol, 295000, Russia
 PDF, 900 kB
  PDF, 900 kB
DOI: 10.18287/2412-6179-CO-1561
Pages: 378-382.
Full text of article: Russian language.
 
Abstract:
In this paper, we study the propagation of optical vortices (OVs) through an add-drop filter based on a multimode  fiber. Using vector approximation and the transfer matrix formalism, we study  the transmission of OVs through such a system. We obtain transmission curves  for OVs and show that the add-drop filter can invert topological charges of  incoming vortices. We suggest that such a system may be used for generating OV  frequency combs. We also study a group delay time and argue that such a  photonic-circuit element may be used in time delay lines for structured modes.  In addition, we study orbital angular momentum transformation by such a system.
Keywords:
optical fiber, add-drop filter, optical vortex,  orbital angular momentum.
Citation:
  Lapin BP, Aliyeva SS, Yavorsky MA, Alexeyev CN. Optical vortices in add-drop filters. Computer Optics 2025; 49(3): 378-382. DOI: 10.18287/2412-6179-CO-1561.
Acknowledgements:
  This work was financially supported by the Russian  Science Foundation (Project No. 20-12-00291-P).
References:
  - Stokes LF, Chodorow M, Shaw HJ. All-single-mode  fiber resonator. Opt Lett 1982; 7(6): 288-230. DOI: 10.1364/OL.7.000288.
 
- Shi B, Chen X, Cai Y, Kang Q, Wang Y. Photonic  crystal concentric dual-microring resonator for refractive index sensing. J Opt  Soc Am B 2023; 40(9): 2462-2469. DOI: 10.1364/JOSAB.496822.
 
- Ding  Z, Sun J, Li C, Shi Y. Broadband ultrasound detection using silicon micro-ring  resonators. J Lightw Technol 2023; 41(6): 1906-1910. DOI:  10.1109/JLT.2022.3227064.
 
- Li  X, Lu L, Chen J, Zhou L. Power-efficient polarization-insensitive tunable  microring filter on a multi-layer Si3N4-on-SOI platform.  Opt Lett 2023; 48(18): 4861-4864. DOI: 10.1364/OL.498636.
 
- Ren  L, Yuan S, Zhu S, Shi L, Zhang X. Tunable kilohertz microwave photonic bandpass  filter based on backscattering in a microresonator. Opt Lett 2022; 47(17):  4572-4575. DOI: 10.1364/OL.468442.
 
- Bazzanella D,  Biasi S, Mancinelli M, Pavesi L. A microring as a reservoir computing node:  Memory/nonlinear tasks and effect of input non-ideality. J Lightw Technol 2022;  40(17): 5917-5926. DOI: 10.1109/JLT.2022.3183694.
 
- Chang  T-H, Fields BM, Kim ME, Hung C-L. Microring resonators on a suspended membrane  circuit for atom–light interactions. Optica 2019; 6(9): 1203-1210. DOI:  10.1364/OPTICA.6.001203.
 
- Shen  Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years  on: OAM manipulation from topological charge to multiple singularities. Light  Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
 
- Wang  J. Advances in communications using optical vortices. Photonics Res 2016; 4(5):  B14-B28. DOI: 10.1364/PRJ.4.000B14.
 
- Alexeyev  CN, Barshak EV, Lapin BP, Yavorsky MA. Transmission of optical vortices through  fiber loop resonators. Opt Lett 2019; 44(16): 4044-4047. DOI:  10.1364/OL.44.004044.
 
- Alexeyev CN,  Barshak EV, Lapin BP, Yavorsky MA. Topological resonances, superefficient  orbital-angular-momentum control, and spin-orbit-interaction enhancement in  fiber-loop resonators. Phys Rev A 2020; 101(): 063801. DOI:  10.1103/PhysRevA.101.063801.
 
- Alexeyev  CN, Alieva SS, Barshak EV, Lapin BP, Yavorsky MA. Slow optical vortices in  multicoil fiber resonators. J Opt Soc Am B 2022; 39(8): 2289-2294. DOI:  10.1364/JOSAB.461036.
 
- Snyder  AW, Love JD. Optical waveguide theory. London, New York: Chapman and Hall;  1983.
 
- Berry  MV. Paraxial beams of spinning light. Proc SPIE 1998; 3487: 6-11. DOI:  10.1117/12.317704.
 
- Chen  B, Zhou Y, Liu Y, Ye C, Cao Q, Huang P, Kim C, Zheng Y, Oxenløwe LK, Yvind K,  Li J, Li J, Zhang Y, Dong C, Fu S, Zhan Q, Wang X, Pu M, Liu J. Integrated  optical vortex microcomb. Nature Photon 2024; 18(6): 625-631. DOI:  10.1038/s41566-024-01415-0.
 
- Schwelb  O. Transmission, group delay, and dispersion in single-ring optical resonators  and add/drop filters-a tutorial overview. J Lightw Technol 2004; 22(5):  1380-1394. DOI: 10.1109/JLT.2004.827666. 
- Wang Y, Wu Q, Wang H, Liu J, Zheng Z, Zhang M, Zhang H. Thermally  tunable microfiber knot resonator with flexible graphene heater. Chin Opt Lett  2021; 19(5): 051301. DOI: 10.1364/COL.19.051301.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20