(49-3) 03 * << * >> * Russian * English * Content * All Issues
  
Spin and orbital Hall effects in the tight focus of coaxial superposition of two cylindrical vector beams of different-parity orders
 V.V. Kotlyar 1,2, A.A. Kovalev 1,2, S.S. Stafeev 1,2, A.M. Telegin 2
 1 Image Processing Systems Institute, NRC "Kurchatov Institute",
     Molodogvardeyskaya Str. 151, Samara, 443001, Russia;
     2 Samara National Research University,
  Moskovskoye Shosse 34, Samara, 443086, Russia
 PDF, 1395 kB
  PDF, 1395 kB
DOI: 10.18287/2412-6179-CO-1549
Pages: 369-377.
Full text of article: Russian language.
 
Abstract:
We  study tight focusing of coaxial superposition of two cylindrical vector beams  (CVB) of different orders. In the initial plane, the polarization singularity  index of such superposition equals the half-sum of the orders of the two  constituent CVBs. Such superposition has neither spin angular momentum (SAM)  nor transverse energy flow in the initial plane. We demonstrate that if two  constituent CVBs are of different-parity orders, then, in the focal plane,  there occur regions with nonzero longitudinal SAM components of alternating  sign, alongside regions where opposite-handed transverse energy flows are  rotating along closed paths (clockwise and counterclockwise). This means that  the longitudinal spin and orbital Hall effects arise in the focal plane. On the  contrary, if the two CVBs are of same-parity orders, polarization in the focal  plane is inhomogeneous linear and the energy flow (Umov-Poynting vector) only  has an on-axis component.
Keywords:
cylindrical  vector beam, polarization singularity, tight focusing, spin angular momentum, spin Hall effect, orbital Hall effect.
Citation:
  Kotlyar VV, Kovalev AA, Stafeev SS, Telegin AM. Spin and orbital Hall effects in the tight focus of coaxial superposition of two cylindrical vector beams of different-parity orders. Computer Optics 2025; 49(3): 369-377. DOI: 10.18287/2412-6179-CO-1549.
Acknowledgements:
  This work was partly funded by the Russian Science Foundation under  project No. 23-12-00236 (Theoretical part) and under the state assignment of the NRC "Kurchatov  Institute" (Numerical simulation).
References:
  - Zhan Q. Cylindrical  vector beams: from mathematical concepts to applications. Adv Opt Photon 2009;  1(1): 1-57. DOI: 10.1364/AOP.1.000001.
 
- Yew EYS, Sheppard CJR.  Tight focusing of radially polarized Gaussian and Bessel–Gauss beams. Opt Lett 2007;  32(23): 3417-3419. DOI: 10.1364/OL.32.003417.
 
- Hnatovsky  C, Shvedov V, Krolikowski W, Rode A. Revealing local field structure of focused  ultrashort pulses. Phys Rev Lett 2011; 106(12): 123901. DOI:  10.1103/PhysRevLett.106.123901.
 
- Lv  HR, Lu XQ, Han YS, Mou Z, Zhou CD, Wang SY, Teng SY. Metasurface cylindrical  vector light generators based on nanometer holes. New J Phys 2019; 21(12):  123047. DOI: 10.1088/1367-2630/ab5f44. 
 
- Milione  G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector  beams to encode information for optical communication. Opt Lett 2015; 40(21):  4887-4890. DOI: 10.1364/OL.40.004887.
 
- Harm  W, Bernet S, Ritsch-Marte M, Harder I, Lindlein N. Adjustable diffractive  spiral phase plates. Opt Express 2015; 23(1): 413-421. DOI:  10.1364/OE.23.000413.
 
- Marrucci  L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wave front  shaping in the visible domain: Switchable helical mode generation. Appl Phys  Lett 2006; 88(22): 221102. DOI: 10.1063/1.2207993.
 
- Zhao  Z, Wang J, Li SH, Willner AE. Metamaterials-based broadband generation of  orbital angular momentum carrying vector beams. Opt Lett 2013; 38(6): 932-934.  DOI: 10.1364/OL.38.000932.
 
- Chen  WB, Abeysinghe DC, Nelson RL, Zhan QW. Plasmonic lens made of multiple concentric  metallic rings under radially polarized illumination. Nano Lett 2009; 9(12):  4320-4325. DOI: 10.1021/nl903145p.
 
- Chen S, Xie Z,  Ye H, Wang X, Guo Z, He Y, Li Y, Yuan X, Fan D. Cylindrical vector beam multiplexer/demultiplexer  using off-axis polarization control. Light Sci Appl 2021; 10: 222. DOI:  10.1038/s41377-021-00667-7.
 
- Li  J, Chen S, Yang H, Li J, Yu P, Cheng H, Gu C, Chen H-T, Tian J. Simultaneous  control of light polarization and phase distributions using plasmonic  metasurfaces. Adv Funct Mater 2015; 25(5): 704-710. DOI:  10.1002/adfm.201403669.
 
- Deng  Z-L, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J, Wang GP, Zhao  R, Wang X, Cao Y, Cheng X, Li G, Li X. Diatomic metasurface for vectorial  holography. Nano Lett 2018; 18(5): 2885-2892. DOI: 10.1021/acs.nanolett.8b00047.
 
- Chen  Q, Liu P, Fu Y, Zhang S, Zhang Y, Yuan X, Min C. Monolayer chiral metasurface  for generation of arbitrary cylindrical vector beams. Photonics 2024; 11(1):  57. DOI: 10.3390/photonics 11010057.
 
- Freund  I. Cones, spirals, and Möbius strips, in elliptically polarized light. Opt  Commun 2005; 249(1-3): 7-22. DOI: 10.1016/j.optcom.2004.12.052.
 
- Kotlyar  VV, Stafeev SS, Kovalev AA, Zaitsev VD. Spin Hall effect before and after the  focus of a high-order cylindrical vector beam. Appl Sci 2022; 12(23): 12218. DOI:  10.3390/app122312218.
 
- Shu  W, Lin C, Wu J, Chen S, Ling X, Zhou X, Luo H, Wen S. Three-dimensional spin  Hall effect of light in tight focusing. Phys Rev A 2020; 101(2): 023819. DOI:  10.1103/physreva.101.023819.
 
- Stafeev  SS, Nalimov AG, Zaitsev VD, Kotlyar VV. Tight focusing cylindrical vector beams  with fractional order. J Opt Soc Am B 2021; 38(4): 1090-1096. DOI:  10.1364/JOSAB.413581.
 
- Kotlyar  VV, Stafeev SS, Zaitsev VD, Kozlova ES. Spin-orbital conversion with the tight  focus of an axial superposition of a high-order cylindrical vector beam and a  beam with linear polarization. Micromachines 2022; 13(7): 1112. DOI:  10.3390/mi13071112.
 
- He  Y, Xie Z, Yang B, Chen X, Liu J, Ye H, Zhou X, Li Y, Chen S, Fan D.  Controllable photonic spin Hall effect with phase function construction.  Photonics Res 2020; 8(6): 963-971. DOI: 10.1364/PRJ.388838.
 
- Richards B, Wolf E. Electromagnetic  diffraction in optical systems. II. Structure of the image field in an  aplanatic system. Proc R Soc Lond Ser A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
 
- Khonina  SN, Ustinov AV, Porfirev AP. Vector Lissajous laser beams. Opt Lett 2020;  45(15): 4112-4115. DOI: 10.1364/OL.398209.
 
- Bliokh KY, Ostrovskaya EA, Alonso MA,  Rodriguez-Herrera OG, Lara D, Dainty C. Spin-to-orbital angular momentum  conversion in focusing, scattering, and imaging systems. Opt Express 2011;  19(27): 26132-26149. DOI: 10.1364/OE.19.026132.
 
- Kovalev  AA, Kotlyar VV. Spin Hall effect of double-index cylindrical vector beams in a  tight focus. Micromachines 2023; 14(2): 494. DOI: 10.3390/mi14020494.
 
- Humblet  J. Sur le moment d’impulsion d’une onde électromagnétique. Physica 1943; 10(7):  585-603. DOI: 10.1016/s0031-8914(43)90626-3.
 
- Donato  MG, Vasi S, Sayed R, Jones PH, Bonaccorso F, Ferrari AC, Gucciardi PG, Maragò  OM. Optical trapping of nanotubes with cylindrical vector beams. Opt Lett 2012;  37(16): 3381-3383. DOI: 10.1364/OL.37.003381.
 
- Zhong  MC, Gong L, Li D, Zhou JH, Wang ZQ, Li YM. Optical trapping of core-shell  magnetic microparticles by cylindrical vector beams. Appl Phys Lett 2014;  105(18): 181112. DOI: 10.1063/1.4901343.
 
- Yang  X, Mou Y, Zapata R, Reynier B, Gallas B, Mivelle M. An inverse Faraday effect  generated by linearly polarized light through a plasmonic nano-antenna.  Nanophotonics 2023; 12(4): 687-694. DOI: 10.1515/nanoph-2022-0488.
 
- González-Alcalde  AK, Shi X, Ortiz VH, Feng J, Wilson RB, Vuong LT. Enhanced inverse Faraday  effect and time-dependent thermo-transmission in gold nanodisks. Nanophotonics  2024; 13(11): 1993-2002. DOI: 10.1515/nanoph-2023-0777.
 
- Zhai  Y, Cao L, Liu Y, Tan X. A review of polarization-sensitive materials for  polarization holography. Materials 2020; 13(23): 5562. DOI: 10.3390/ma13235562.
 
- Haslinger  MJ, Sivun D, Pöhl H, Munkhbat B, Mühlberger M, Klar TA, Scharber MC, Hrelescu  C. Plasmon-assisted direction- and polarization-sensitive organic thin-film detector.  Nanomaterials 2020; 10(9): 1866. DOI: 10.3390/nano10091866.
 
- Cao  M, Xie Z, Zhong Y, Lei T, Zhang W, Liu S, Yuan X. Cylindrical vector beams  demultiplexing communication based on a vectorial diffractive optical element.  Nanophotonics 2023; 12(9): 1753-1762. DOI: 10.1515/nanoph-2023-0009. 
- Zhang H, Fu C, Fang J, Lei T, Zhang Y, Yuan X.  Cylindrical vector beams demultiplexing optical communication based on  spin-dependent vortex Dammann grating. Appl Opt 2020; 59(35): 11041-11045. DOI:  10.1364/AO.409641.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20