(49-3) 14 * << * >> * Russian * English * Content * All Issues
  
An adaptive radial object recognition algorithm for lightweight drones in different environments
 S. Song 1, J. Liu 1, M.P. Shleimovich 2, R.M. Shakirzyanov 2, S.V. Novikova 2
 1 YangZhou Marine Electronic Instruments Institute,
     Yangzhou, 225101, Jangsu, China;
     2 Kazan National Research Technical University named after A.N. Tupolev – KAI (KNRTU-KAI),
     420111, Russia, Kazan, st. K. Marksa, 10
 
 PDF, 8262 kB
  PDF, 8262 kB
DOI: 10.18287/2412-6179-CO-1534
Pages: 480-492.
Full text of article: English language.
 
Abstract:
The paper proposes a  group of radial shape object recognition methods capable of finding many  different-sized circular objects in an image with high accuracy in minimum time  and conditions of uneven brightness of frame areas. The methods are not  computationally demanding, making them suitable for use in computer vision  systems of light unmanned vehicles, which cannot carry powerful computing  devices on board. The methods are also suitable for unmanned vehicles traveling  at high speed, where image processing must be performed in real-time. The  proposed algorithms are robust to noise. When combined into a single group, the  developed algorithms constitute a customizable set capable of adapting to  different imaging conditions and computing power. This property allows the  method to be used for detecting objects of interest in different environments:  from the air, from the ground, underwater, and when moving the vehicle between  these environments. We proposed three methods: a hybrid FRODAS method combines  the FRST and Hough methods to increase accuracy and reduce the time to search  for circles in the image; a PaRCIS method based on sequential image compression  and reconstruction to increase the speed of searching for multiple circles of  different radii and removing noise; an additional modification of LIPIS is  used with any of the primary or developed methods to reduce the sensitivity to  sharp variations in the frame's brightness. The paper presents comparative  experiments demonstrating the advantages of the developed methods over  classical circle recognition methods regarding accuracy and speed. It shows the  advantage of recognizing circles of different brightness. Experiments on  recognizing multiple real-world objects in photographs taken on the ground, in  the air, and underwater, with complex scenes under distortion and blurring with  different degrees of illumination, demonstrate the effectiveness of the set of  methods.
Keywords:
computer vision,  multiple object recognition, image compression, recognition within a sliding  window, non-uniform image brightness, changing shooting conditions.
Citation:
  Song S, Liu J, Shleimovich MP, Shakirzyanov RM, Novikova SV. An adaptive radial object recognition algorithm for lightweight drones in different environments. Computer Optics 2025; 49(3): 480-492. DOI: 10.18287/2412-6179-CO-1534.
Acknowledgements:
  The work was supported  by the Kazan National Research   Technical University  named after A.N. Tupolev Strategic Academic Leadership Program  (“PRIORITET–2030”).
References:
  - Mohsan SAH, Othman NQH,  Li Y, et al. Unmanned aerial vehicles (UAVs): practical aspects, applications,  open challenges, security issues, and future trends. Intel Serv Robotics 2023;  16(1): 109-137. DOI: 10.1007/s11370-022-00452-4.
 
- Hu  X, Assaad RH. The use of unmanned ground vehicles (mobile robots) and unmanned  aerial vehicles (drones) in the civil infrastructure asset management sector:  Applications, robotic platforms, sensors, and algorithms. Expert Syst Appl  2023; 232: 120897. DOI: 10.1016/j.eswa.2023.120897.
 
- Liu  Q, Li Z, Yuan S, Zhu Y, Li X. Review on vehicle detection technology for  unmanned ground vehicles. Sensors 2021; 21(4): 1354. DOI: 10.3390/s21041354.
 
- Liu  F, Ma Z, Mu B, Duan C, Chen R, Qin Y, Pu H, Luo J. Review on fault-tolerant  control of unmanned underwater vehicles. Ocean Eng 2023; 285(Pt2): 115471. DOI:  10.1016/j.oceaneng.2023.115471.
 
- Chen  C, Chen S, Hu G, Chen B, Chen P, Su K. An auto-landing strategy based on  pan-tilt based visual servoing for unmanned aerial vehicle in GNSS-denied  environments. Aerosp Sci Technol 2021; 116: 106891. DOI:  10.1016/j.ast.2021.106891.
 
- Ma  M-Y, Shen S-E, Huang Y-C. Enhancing UAV Visual Landing Recognition with YOLO’s  Object Detection by Onboard Edge Computing. Sensors. 2023; 23(21):8999.  https://doi.org/10.3390/s23218999
 
- Mu  L, Li Q, Wang B, Zhang Y, Feng N, Xue X, Sun W. A vision-based autonomous  landing guidance strategy for a micro-UAV by the modified camera view. Drones  2023; 7(6): 400. DOI: 10.3390/drones7060400.
 
- Nugraha  BT, Su S-F, Fahmizal. Towards  self-driving car using convolutional neural network and road lane detector.  2017 2nd Int Conf on Automation, Cognitive Science, Optics, Micro  Electro-Mechanical System, and Information Technology (ICACOMIT) 2017: 65-69.  DOI: 10.1109/ICACOMIT.2017.8253388.
 
- Badrloo  S, Varshosaz M, Pirasteh S, Li J. Image-based obstacle detection methods for  the safe navigation of unmanned vehicles: A review. Remote Sens 2022; 14(15):  3824. DOI: 10.3390/rs14153824.
 
- Daigavane  PM, Bajaj PR. Road  lane detection with improved canny edges using ant colony optimization. 2010  3rd Int Conf on Emerging Trends in Engineering and Technology 2010: 76-80. DOI:  10.1109/ICETET.2010.128.
 
- Liu  S, Ozay M, Okatani T, et al. Detection and pose estimation for short-range  vision-based underwater docking. IEEE Access 2018; 7: 2720-2749. DOI:  10.1109/ACCESS.2018.2885537.
 
- Hu  P, Liu W, Yang J, Yu X, Xu L, Guo L. Underwater autonomous orientation using  submarine light intensity gradient. Mechatronics 2024; 98: 103134. DOI:  10.1016/j.mechatronics.2023.103134.
 
- Shakirzyanov  RM, Shleymovich MP, Novikova SV. Method for unmanned vehicles automatic  positioning based on signal radially symmetric markers recognition of  underwater targets. Autom Remote Control 2023; 84(7): 831-851. DOI:  10.25728/arcRAS.2023.24.60.001.
 
- Xu J, Huang Y, Ying D. Traffic sign  detection and recognition using multi-frame embedding of video-log images. Remote  Sens 2023; 15(12): 2959. DOI: 10.3390/rs15122959.
 
- Sebanja  I, Megherbi DB. Automatic detection and recognition of traffic road signs for  intelligent autonomous unmanned vehicles for urban surveillance and rescue.  2010 IEEE Int Conf on Technologies for Homeland Security (HST) 2010: 132-138.  DOI: 10.1109/THS.2010.5655078.
 
- Zheng  L, Ai P, Wu Y. Building  recognition of UAV remote sensing images by deep learning. IGARSS 2020 – 2020  IEEE International Geoscience and Remote Sensing Symposium 2020: 1185-1188.  DOI: 10.1109/IGARSS39084.2020.9323322.
 
- Yang  HL, Yuan J, Lunda D, Laverdiere M, Rose A, Bhaduri  B. Building  extraction at scale using convolutional neural network: Mapping of the United States.  IEEE J Sel Top Appl Earth Obs Remote Sens 2018: 11(8): 2600-2614. DOI:  10.1109/JSTARS.2018.2835377.
 
- Jin H-S, Cho H, Jiafeng H, Lee J-H,  Kim M-J, Jeong S-K, Ji D-H, Joo K, Jung D, Choi H-S. Hovering control of UUV  through underwater object detection based on deep learning. Ocean Eng 2022; 253: 111321. DOI: 10.1016/j.oceaneng.2022.111321.
 
- Sharp  CS, Shakernia O, Sastry SS. A vision system for landing an unmanned aerial  vehicle. Proc IEEE Int Conf on Robotics and Automation 2001: 1720-1727. DOI:  10.1109/ROBOT.2001.932859.
 
- Roters  J, Jiang X, Rothaus K. Recognition of traffic lights in live video streams on  mobile devices. IEEE Trans Circuits Syst Video Technol 2011; 21(10): 1497-1511.  DOI: 10.1109/TCSVT.2011.2163452.
 
- Fleyeh H. Color  detection and segmentation for road and traffic signs. IEEE Conf on Cybernetics  and Intelligent Systems 2004; 809-814. DOI: 10.1109/ICCIS.2004.1460692.
 
- Shakirzyanov  RM, Shleimovich MP. Object detection in road images based on multiscale weight  model using radial symmetry transformation [In Russian]. In Book: Minnihanov  RN, ed. International Forum "Kazan Digital Week-2022" : Collection of  materials of the International Forum. Kazan:  Scientific Center for Life Safety Publisher; 2022: 79-87. 
 
- Shakirzyanov RM, Shleimovich MP.  Model and method for colored object detection using modified radial symmetry  transformation. Vestnik of Ryazan State Radio Engineering University 2021; 77:  101-112. DOI: 10.21667/1995-4565-2021-77-101-112.
 
- Schulein R, Do C, Javidi B.  Distortion-tolerant 3D recognition of underwater objects using neural networks.  J Opt Soc Am A 2010; 27(3):  461-468. DOI: 10.1364/JOSAA.27.000461.
 
- Crebolder J, Sloan R. Determining  the effects of eyewear fogging on visual task performance. Appl Ergon 2004;  35(4): 371-381. DOI: 10.1016/j.apergo.2004.02.005.
 
- Ma Z, Chen D, Li G, Jing X, Xiao S.  Configuration design and trans-media control status of the hybrid aerial  underwater vehicles. Appl Sci 2022; 12(2):  765. DOI: 10.3390/app12020765.
 
- Pinheiro  PM, Neto AA, Grando RB, et al. Trajectory planning for hybrid unmanned aerial  underwater vehicles with smooth media transition. J Intell Robot Syst 2022;  104(3): 46. DOI: 10.1007/s10846-021-01567-z.
 
- Bieda  R, Jaskot K, Jędrasiak K, Nawrat A. Recognition and location of objects in the  visual field of a UAV vision system. In Book: Nawrat A, Kuś Z, eds. Vision  based systemsfor UAV applications. Cham: Springer International Publishing Switzerland; 2013. DOI: 10.1007/978-3-319-00369-6_2.
 
- Huang  W, Zhou X, Dong M, et al. Multiple objects tracking in the UAV system based on  hierarchical deep high-resolution network. Multimed Tools Appl 2021; 80(9):  13911-13929. DOI: 10.1007/s11042-020-10427-1.
 
- Dong Y, Ma Y, Li Y, Li Z.  High-precision real-time UAV target recognition based on improved YOLOv4. Comput  Commun 2023; 206: 124-132. DOI: 10.1016/j.comcom.2023.04.019.
 
- Raavi  S, Chandu PB, SudalaiMuthu T. Automated recognition of underwater objects using  deep learning. 2023 7th International Conference on Trends in Electronics and  Informatics (ICOEI) 2023: 1055-1059. DOI: 10.1109/ICOEI56765.2023.10125839.
 
- Kyung W-J, Kwon  O-S, Ha Y-H. Correction of faded colors in an image using an integrated  multi-scale gray world algorithm. J  Imaging Sci Technol 2014; 57: art00004. DOI: 10.2352/J.ImagingSci.Technol.2013.57.6.060505.
 
- Sulaiman A, Omar K, Nasrudin MF.  Degraded historical document binarization: A review on issues, challenges,  techniques, and future directions. J Imaging 2019; 5(4): 48. DOI: 10.3390/jimaging5040048.
 
- Zhang Z. Image  recognition methods based on deep learning. In Book: Jain LC, Kountchev R, Tai  Y, Kountcheva R, eds. 3D imaging – Multidimensional signal processing and deep  learning. 3D images, graphics and information technologies, Volume 1. Springer,  Singapore Nature Singapore Pte Ltd; 2022. DOI: 10.1007/978-981-19-2448-4_3.
 
- Anuse  A, Vyas V. A novel training algorithm for convolutional neural network. Complex  Intell Syst 2016; 2: 221-234. DOI: 10.1007/s40747-016-0024-6.
 
- Shah  B, Bhavsar H. Time complexity in deep learning models. Procedia Computer Sci  2022; 215: 202-210. DOI: 10.1016/j.procs.2022.12.023.
 
- Lange  S, Sünderhauf N, Protzel P. Autonomous landing for a multirotor UAV using  vision. Proc Int Conf on Simulation, Modeling and Programming for Autonomous  Robots 2008: 482-491.
 
- Widyantoro  DH, Saputra KI. Traffic lights detection and recognition based on color  segmentation and circle hough transform. 2015 Int Conf on Data and Software  Engineering (ICoDSE) 2015: 237-240. DOI: 10.1109/ICODSE.2015.7437004.
 
- de la Escalera A, Armingol JM, Mata  M. Traffic sign recognition and analysis for intelligent vehicles. Image  Vision Comput 2003; 21(3): 247-258. DOI: 10.1016/S0262-8856(02)00156-7.
 
- Min-Allah N, Jan F, Alrashed S.  Pupil detection schemes in human eye: a review. Multimedia Syst 2021; 27: 753-777. DOI: 10.1007/s00530-021-00806-5.
 
- González RC, Woods RE. Digital image  processing. 3rd ed. Pearson; 2008.  ISBN: 9780135052679.
 
- Zhang W, Shui P-L. Contour-based corner detection via angle  difference of principal directions of anisotropic Gaussian directional  derivatives. Pattern Recogn 2015; 48(9):  2785-2797. DOI: 10.1016/j.patcog.2015.03.021.
 
- Bräunl T, Feyrer  S, Rapf W, Reinhardt M. Edge detection. In Book: Bräunl T, Feyrer S, Rapf W, Reinhardt M,  eds. Parallel image processing. Berlin, Heidelberg: Springer-Verlag; 2001. DOI:  10.1007/978-3-662-04327-1_4.
 
- Martínez-Otzeta JM, Rodríguez-Moreno  I, Mendialdua I, Sierra B. RANSAC for robotic applications: A survey. Sensors  2022; 23(1): 327. DOI: 10.3390/s23010327.
 
- Hart  PE. How the hough transform was invented. IEEE Signal Process Mag 2009; 26(6):  18-22. DOI: 10.1109/msp.2009.934181.
 
- Spasojević  SS, Šušić MZ, Đurović ŽM. Recognition and classification of geometric shapes  using neural networks. 11th Symposium on Neural Network Applications in  Electrical Engineering 2012: 71-76. DOI: 10.1109/NEUREL.2012.6419966.
 
- Kirpichnikov  AP, Lyasheva SA, Shakirzyanova AA, Shleymovich MP, Shakirzyanov RM. Detecting  circles in images, using the hough method and fast radial symmetry transform  [In Russian]. Vestnik Tehnologicheskogo Universiteta 2019; 22(8): 164-167.
 
- Lyasheva SA,  Shakirzyanov RM, Shakirzyanova AA, Shleymovich MP. Detecting the centers of  objects in images using the radial symmetry transformation method [In Russian].  Int Scientific Conf Proc "Advanced Information Technologies and Scientific  Computing" 2019: 270-273.
 
- Rad AA, Faez K,  Oaragozlou N. Fast circle detection using gradient pair vectors. Proc Seventh  Int Conf on Digital Image Computing: Techniques and Applications 2003: 879-887.
 
- Fornaciari  M, Prati A, Cucchiara R. A fast and effective ellipse detector for embedded  vision applications. Pattern Recogn 2014; 47(11): 3693-3708. DOI:  10.1016/j.patcog.2014.05.012.
 
- Lin  S, Jin L, Chen Z. Real-time monocular vision system for UAV autonomous landing  in outdoor low-illumination environments. Sensors 2021; 21(18): 6226. DOI:  10.3390/s21186226.
 
- Puertas E,  De-Las-Heras G, Fernbndez-Andries J, Sbnchez-Soriano J. Dataset: Roundabout  aerial images for vehicle detection. Data 2022; 7(4): 47. DOI:  10.3390/data7040047. 
- García GB, Herausgeber. Learning image processing  with OpenCV: exploit the amazing features of OpenCV to create powerful image  processing applications through easy-to-follow examples. Birmingham: Packt Pub Ltd; 2015. ISBN:  978-1783287659.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20